Nerve injury-induced gut dysbiosis contributes to spinal cord TNF-α expression and nociceptive sensitization.

Brain Behav Immun

Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea; Interdisciplinary Program in Neuroscience, College of Natural Science, Seoul National University, Seoul, Republic of Korea. Electronic address:

Published: May 2023

The impact of the gut microbiota on glial cell growth and maturation via the gut-brain axis is highlighted herein. Considering that glial activation is crucial for onset and maintenance of neuropathic pain, we assessed the putative involvement of gut microbiota in the pathogenesis of neuropathic pain. Depletion of mouse gut microbiota with chronic antibiotics cocktail treatment prevented nerve injury-induced mechanical allodynia and thermal hyperalgesia both in male and female mice. Furthermore, post-injury treatment with antibiotics cocktail relieved ongoing pain in neuropathic pain-established mice. Upon recolonization of the gut microbiota after cessation of antibiotics, nerve injury-induced mechanical allodynia relapsed. Depletion of gut microbiota accompanied a decrease in nerve injury-induced TNF-α expression in the spinal cord. Notably, nerve injury changed the diversity and composition of the gut microbiome, which was measured by 16 s rRNA sequencing. We then tested if probiotic administration ameliorating dysbiosis affected the development of neuropathic pain after nerve injury. Probiotic treatment for three weeks prior to nerve injury inhibited nerve injury-induced TNF-α expression in the spinal cord and pain sensitization. Our data reveal an unexpected link between the gut microbiota and development and maintenance of nerve injury-induced neuropathic pain, and we propose a novel strategy to relieve neuropathic pain through the gut-brain axis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbi.2023.03.005DOI Listing

Publication Analysis

Top Keywords

nerve injury-induced
24
gut microbiota
24
neuropathic pain
20
spinal cord
12
tnf-α expression
12
nerve injury
12
nerve
9
gut
8
gut-brain axis
8
antibiotics cocktail
8

Similar Publications

The peripheral nervous system is a complex ecological network, and its injury triggers a series of fine-grained intercellular regulations that play a crucial role in the repair process. The peripheral nervous system is a sophisticated ecological network, and its injury initiates a cascade of intricate intercellular regulatory processes that are instrumental in the repair process. Despite the advent of sophisticated microsurgical techniques, the repair of peripheral nerve injuries frequently proves inadequate, resulting in adverse effects on patients' quality of life.

View Article and Find Full Text PDF

Background: Cavernous nerve injury-induced erectile dysfunction (CNI-ED) is a common complication following radical prostatectomy and severely affects patients' quality of life. The mitochondrial impairment in corpus cavernosum smooth muscle cells (CCSMCs) may be an important pathological mechanism of CNI-ED. Previous studies have shown that transplantation of human adipose derived stem cells (ADSC) can alleviate CNI-ED in a rat model.

View Article and Find Full Text PDF

Enhancer-driven Shh signaling promotes glia-to-mesenchyme transition during bone repair.

Bone Res

January 2025

Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China.

Plp1-lineage Schwann cells (SCs) of peripheral nerve play a critical role in vascular remodeling and osteogenic differentiation during the early stage of bone healing, and the abnormal plasticity of SCs would jeopardize the bone regeneration. However, how Plp1-lineage cells respond to injury and initiate the vascularized osteogenesis remains incompletely understood. Here, by employing single-cell transcriptional profiling combined with lineage-specific tracing models, we uncover that Plp1-lineage cells undergoing injury-induced glia-to-MSCs transition contributed to osteogenesis and revascularization in the initial stage of bone injury.

View Article and Find Full Text PDF

Neuropathic pain is a pervasive health concern worldwide, posing significant challenges to both clinicians and neuroscientists. While acute pain serves as a warning signal for potential tissue damage, neuropathic pain represents a chronic pathological condition resulting from injury or disease affecting sensory pathways of the nervous system. Neuropathic pain is characterized by long-lasting ipsilateral hyperalgesia (increased sensitivity to pain), allodynia (pain sensation in response to stimuli that are not normally painful), and spontaneous unprovoked pain.

View Article and Find Full Text PDF

Brain-derived neurotropic factor (BDNF) is expressed by skeletal muscle as a myokine. Our previous work showed that the active precursor, proBDNF, is the predominant form of BDNF expressed in skeletal muscle, and that following skeletal muscle injury, proBDNF levels are significantly increased. However, the function of the muscle-derived proBDNF in injury-induced inflammation has yet to be fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!