This study investigated the behavior of per- and polyfluoroalkyl substances (PFAS) in multiple pilot-scale vertical flow constructed wetlands (VFCW) treating landfill leachate. Eight pilot-scale VFCW columns planted with Typha latifolia or Scirpus Californicus were fed untreated municipal solid waste (MSW) landfill leachate that was diluted with potable water at a 1:10 ratio (1 part leachate to 10 parts total) at a fixed daily hydraulic loading rate of 0.525 m d. Ninety-two PFAS were examined and 18 PFAS were detected at quantifiable concentrations (7 precursor species and 11 terminal species). The average concentration of Σ PFAS in the influent was 3,100 ng L, which corresponded with minimal reduction in the effluents from the four VFCW (decreases ranged from 1% to 12% on average for Σ PFAS); however, precursors 6:3 FTCA, 7:3 FTCA, N-MeFOSAA, and N-EtFOSAA concentrations decreased significantly in the VFCW effluents, and significant decreases in the concentrations of these PFAA-precursors were concurrent with a significant increase in concentrations of five PFAAs (PFBA, PFNA, PFBS, PFOS, and PFOSI). This trend indicates that from a regulatory perspective, standalone VFCWs are likely to produce an apparent PFAS increase, which may also be true for many other leachate treatment processes incorporating aerobic biological treatment. Additional treatment to address PFAS should be integrated prior to the use of any system, including VFCWs, for the treatment of constituents of concern in MSW landfill leachate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2023.03.001 | DOI Listing |
Sci Rep
December 2024
British Antarctic Survey, High Cross, Madingley Road, Cambridge, UK.
Marine microplastic is pervasive, polluting the remotest ecosystems including the Southern Ocean. Since this region is already undergoing climatic changes, the additional stress of microplastic pollution on the ecosystem should not be considered in isolation. We identify potential hotspot areas of ecological impact from a spatial overlap analysis of multiple data sets to understand where marine biota are likely to interact with local microplastic emissions (from ship traffic and human populations associated with scientific research and tourism).
View Article and Find Full Text PDFSci Rep
December 2024
Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém, 8200, Hungary.
Ensuring everyone enjoys healthy lifestyles and well-being at all ages, Progress has been made in increasing access to clean water and sanitation facilities and reducing the spread of epidemics and diseases. The synthesis of nano-particles (NPs) by using microalgae is a new nanobiotechnology due to the use of the biomolecular (corona) of microalgae as a capping and reducing agent for NP creation. This investigation explores the capacity of a distinct indigenous microalgal strain to synthesize silver nano-particles (AgNPs), as well as its effectiveness against multi-drug resistant (MDR) bacteria and its ability to degrade Azo dye (Methyl Red) in wastewater.
View Article and Find Full Text PDFOpen Vet J
November 2024
Department of Pathology and Poultry Disease, College of Veterinary Medicine, University of Diyala, Baqubah, Iraq.
Background: Pollution of aquatic environments with heavy metals causes severe adverse effects on fish, invertebrates, and human. The importance of this study lies in the fact that long-term ingestion of heavy metal-contaminated fish can result in the accumulation of harmful metals in numerous organs and pose a major risk to human health.
Aim: The current study was designed to investigate the concentrations of toxic arsenic (As), lead (Pb), and mercury (Hg) in the liver, gills, and muscles of highly consumed aqua cultured common carp ( L.
Int J Biol Macromol
December 2024
School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, China. Electronic address:
Water pollution has become an increasingly serious issue, necessitating the design and development of more effective wastewater treatment methods. Chitosan-based hydrogels, owing to their unique structural and chemical properties, have demonstrated high efficiency in removing contaminants. However, the application remains restricted by the scarcity of effective adsorption sites and limited environmental stability.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry, University of Ulsan, Ulsan 44610, Republic of Korea. Electronic address:
The improper handling and uncontrolled discharge of toxic organic dyes result in significant adverse effects on both human health and the environment. This study investigates the fabrication of SnO₂, yttrium and cobalt dual-doped SnO₂ (YCSn), chitosan-capped SnO₂ (CS*Sn), and chitosan-capped yttrium and cobalt dual-doped SnO₂ (CS*YCSn) nanoparticles using a one-step coprecipitation method for the photocatalytic degradation of methylene blue (MB) under visible light irradiation. Characterization techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM), and ultraviolet-visible (UV-Vis) spectrophotometry confirm the successful synthesis of biodegradable CS*YCSn nanoparticles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!