"Spongy skin" as a robust strategy to deliver 4-octyl itaconate for conducting dual-regulation against in-stent restenosis.

Biomaterials

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Haining, 314400, China. Electronic address:

Published: May 2023

The valid management of inflammation and precise inhibition of smooth muscle cells (SMCs) is regarded as a promising strategy for regulating vascular responses after stent implantation, yet posing huge challenges to current coating constructions. Herein, we proposed a spongy cardiovascular stent for the protective delivery of 4-octyl itaconate (OI) based on a "spongy skin" approach, and revealed the dual-regulation effects of OI for improving vascular remolding. We first constructed a "spongy skin" onto poly-l-lactic acid (PLLA) substrates, and realized the protective loading of OI with the highest dosage of 47.9 μg/cm. Then, we verified the remarkable inflammation mediation of OI, and surprisingly revealed that the OI incorporation specifically inhibited SMC proliferation and phenotype switching, which contributed to the competitive growth of endothelial cells (EC/SMC ratio ∼ 5.1). We further demonstrated that OI at a concentration of 25 μg/mL showed significant suppression of the TGF-β/Smad pathway of SMCs, leading to the promotion of contractile phenotype and reduction of extracellular matrix. In vivo evaluation indicated that the successful delivery of OI fulfilled the inflammation regulation and SMCs inhibition, therefore suppressing the in-stent restenosis. This "spongy skin" based OI eluting system may serve as a new strategy for improving vascular remolding, and provides a potential concept for the treatment of cardiovascular diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2023.122069DOI Listing

Publication Analysis

Top Keywords

"spongy skin"
16
4-octyl itaconate
8
in-stent restenosis
8
improving vascular
8
vascular remolding
8
"spongy
4
skin" robust
4
robust strategy
4
strategy deliver
4
deliver 4-octyl
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!