AI Article Synopsis

  • The 1,2,3-Triazole moiety, formed through copper-catalyzed azide-alkyne cycloaddition, serves as both a linker and a therapeutic agent with significant biological properties.
  • These compounds can interact with enzymes and receptors in cancer cells, leading to inhibited proliferation, cell cycle arrest, and apoptosis.
  • The review highlights recent findings (from the last decade) on the in vivo anticancer effects of 1,2,3-triazole hybrids, aiming to inspire the development of new and effective anticancer therapies.

Article Abstract

1,2,3-Triazole moiety which is usually constructed by highly versatile, efficacious and selective copper-catalyzed azide-alkyne cycloaddition not only can act as a linker to connect different pharmacophores, but also is a useful pharmacophore with diverse biological properties. 1,2,3-Triazoles are readily interact with diverse enzymes and receptors in cancer cells through non-covalent interactions and can inhibit cancer cell proliferation, arrest cell cycle and induce apoptosis. In particular, 1,2,3-triazole-containing hybrids have the potential to exert dual or multiple anticancer mechanisms of action, representing useful scaffolds in expediting development of novel anticancer agents. The current review summarizes the in vivo anticancer efficacy and mechanisms of action of 1,2,3-triazole-containing hybrids reported in the last decade to continuously open up a map for the remarkable exploration of more effective candidates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2023.115254DOI Listing

Publication Analysis

Top Keywords

123-triazole-containing hybrids
12
mechanisms action
8
updates 123-triazole-containing
4
hybrids vivo
4
vivo therapeutic
4
therapeutic potential
4
potential cancers
4
cancers mini-review
4
mini-review 123-triazole
4
123-triazole moiety
4

Similar Publications

The optimization of auto parts supply chain logistics plays a decisive role in the development of the automotive industry. To reduce logistics costs and improve transportation efficiency, this paper addresses the joint optimization problem of multi-vehicle pickup and delivery transportation paths under time window constraints, coupled with the three-dimensional loading of goods. The model considers mixed time windows, three-dimensional loading constraints, cyclic pickup and delivery paths, varying vehicle loads and volumes, flow balance, and time window constraints.

View Article and Find Full Text PDF

Dopamine (DA) plays important roles in various behaviors, including learning and motivation. Recently, THOC5 was identified as an important regulator in the development of dopaminergic neurons. However, how THOC5 is regulated has not been explored.

View Article and Find Full Text PDF

Accurate estimation of the soil resilient modulus (M) is essential for designing and monitoring pavements. However, experimental methods tend to be time-consuming and costly; regression equations and constitutive models usually have limited applications, while the predictive accuracy of some machine learning studies still has room for improvement. To forecast M efficiently and accurately, a new model named black-winged kite algorithm-extreme gradient boosting (BKA-XGBOOST) is proposed.

View Article and Find Full Text PDF

Theranostic drugs represent an emerging path to deliver on the promise of precision medicine. However, bottlenecks remain in characterizing theranostic targets, identifying theranostic lead compounds, and tailoring theranostic drugs. To overcome these bottlenecks, we present the Theranostic Genome, the part of the human genome whose expression can be utilized to combine therapeutic and diagnostic applications.

View Article and Find Full Text PDF

Accurate prediction of runoff is of great significance for rational planning and management of regional water resources. However, runoff presents non-stationary characteristics that make it impossible for a single model to fully capture its intrinsic characteristics. Enhancing its precision poses a significant challenge within the area of water resources management research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!