Cutting-edge nanoelectrokinetic technology in this work provides a breakthrough for the present clinical demands of molecular diagnosis to detect a trace amount of oncogenic mutation of DNA in a short time without an erroneous PCR procedure. In this work, we combined the sequence-specific labeling scheme of CRISPR/dCas9 and ion concentration polarization (ICP) mechanism to separately preconcentrate target DNA molecules for rapid detection. Using the mobility shift caused by dCas9's specific binding to the mutant, the mutated DNA and normal DNA were distinguished in the microchip. Based on this technique, we successfully demonstrated the dCas9-mediated 1-min detection of single base substitution (SBS) in EGFR DNA, a carcinogenesis indicator. Moreover, the presence/absence of target DNA was identified at a glance like a commercial pregnancy test kit (two lines for positive and one line for negative) by the distinct preconcentration mechanisms of ICP, even at the 0.1% concentration of the target mutant.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.2c05539DOI Listing

Publication Analysis

Top Keywords

oncogenic mutation
8
target dna
8
dna
6
dcas9-mediated pcr-free
4
pcr-free detection
4
detection oncogenic
4
mutation nonequilibrium
4
nonequilibrium nanoelectrokinetic
4
nanoelectrokinetic selective
4
selective preconcentration
4

Similar Publications

Background: Methyltransferase-like (METTL) family protein plays a crucial role in the progression of malignancies. However, the function of METTL17 across pan-cancers, especially in hepatocellular carcinoma (HCC) is still poorly understood.

Methods: All original data were downloaded from TCGA, GTEx, HPA, UCSC databases and various data portals.

View Article and Find Full Text PDF

Background And Aims: Oncogenic KRAS mutations are present in approximately 90% of pancreatic ductal adenocarcinoma (PDAC). However, Kras mutation alone is insufficient to transform precancerous cells into metastatic PDAC. This study investigates how KRAS-mutated epithelial cells acquire the capacity to escape senescence or even immune clearance, thereby progressing to advanced PDAC.

View Article and Find Full Text PDF

Resistance to endocrine therapies remains a major clinical hurdle in breast cancer. Mutations to estrogen receptor alpha (ERα) arise after continued therapeutic pressure. Next generation selective estrogen receptor modulators and degraders/downregulators (SERMs and SERDs) show clinical efficacy, but responses are often non-durable.

View Article and Find Full Text PDF

KEAP1 mutations as key crucial prognostic biomarkers for resistance to KRAS-G12C inhibitors.

J Transl Med

January 2025

Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.

Background: KRAS-G12C inhibitors mark a notable advancement in targeted cancer therapies, yet identifying predictive biomarkers for treatment efficacy and resistance remains essential for optimizing clinical outcomes.

Methods: This systematic meta-analysis synthesized studies available through September 2024 across PubMed, Cochrane Library, SpringerLink, and Embase. Using CRISPR/Cas9 technology, this study generated cells with KEAP1 and STK11 knockouts, and utilized lentiviral vectors to overexpress PD-L1.

View Article and Find Full Text PDF

Protocatechuic aldehyde sensitizes BRAF-mutant melanoma cells to temozolomide through inducing FANCD2 degradation.

Med Oncol

January 2025

Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China.

Temozolomide (TMZ)-based chemotherapy is a primary regimen for melanoma patients who have failed targeted therapy or immunotherapy. However, the low response rate of TMZ-based chemotherapy challenges the patients' prognosis. BRAF mutation is the most frequently mutated site in melanoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!