Background: Patients presenting to the emergency department (ED) with dizziness may be imaged via CTA head and neck to detect acute vascular pathology including large vessel occlusion. We identify commonly documented clinical variables which could delineate dizzy patients with near zero risk of acute vascular abnormality on CTA.

Methods: We performed a cross-sectional analysis of adult ED encounters with chief complaint of dizziness and CTA head and neck imaging at three EDs between 1/1/2014-12/31/2017. A decision rule was derived to exclude acute vascular pathology tested on a separate validation cohort; sensitivity analysis was performed using dizzy "stroke code" presentations.

Results: Testing, validation, and sensitivity analysis cohorts were composed of 1072, 357, and 81 cases with 41, 6, and 12 instances of acute vascular pathology respectively. The decision rule had the following features: no past medical history of stroke, arterial dissection, or transient ischemic attack (including unexplained aphasia, incoordination, or ataxia); no history of coronary artery disease, diabetes, migraines, current/long-term smoker, and current/long-term anti-coagulation or anti-platelet medication use. In the derivation phase, the rule had a sensitivity of 100% (95% CI: 0.91-1.00), specificity of 59% (95% CI: 0.56-0.62), and negative predictive value of 100% (95% CI: 0.99-1.00). In the validation phase, the rule had a sensitivity of 100% (95% CI: 0.61-1.00), specificity of 53% (95% CI: 0.48-0.58), and negative predictive value of 100% (95% CI: 0.98-1.00). The rule performed similarly on dizzy stroke codes and was more sensitive/predictive than all NIHSS cut-offs. CTAs for dizziness might be avoidable in 52% (95% CI: 0.47-0.57) of cases.

Conclusions: A collection of clinical factors may be able to "exclude" acute vascular pathology in up to half of patients imaged by CTA for dizziness. These findings require further development and prospective validation, though could improve the evaluation of dizzy patients in the ED.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9997874PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0280752PLOS

Publication Analysis

Top Keywords

acute vascular
24
vascular pathology
20
100% 95%
16
exclude acute
8
imaged cta
8
cta head
8
head neck
8
dizzy patients
8
decision rule
8
sensitivity analysis
8

Similar Publications

Cell-cell crosstalk in the pathogenesis of acute lung injury and acute respiratory distress syndrome.

Tissue Barriers

January 2025

Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China.

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the result of an exaggerated inflammatory response triggered by a variety of pulmonary and systemic insults. The lung tissues are comprised of a variety of cell types, including alveolar epithelial cells, pulmonary vascular endothelial cells, macrophages, neutrophils, and others. There is mounting evidence that these diverse cell populations within the lung interact to regulate lung inflammation in response to both direct and indirect stimuli.

View Article and Find Full Text PDF

Background/objectives: Acute mesenteric ischemia (AMI) is life-threatening and difficult to diagnose in time. Unlike many cardiovascular diseases, the association between lifestyle factors such as diet, alcohol consumption, and physical activity and AMI is unknown.

Methods: This study is a prospective cohort study with 28,098 middle-aged participants with a mean follow-up time of 23.

View Article and Find Full Text PDF

Background: There is compelling evidence of an inverse association between potassium intake and blood pressure (BP). A potential mechanism for this effect may be dietary potassium-mediated augmentation of endothelium-dependent relaxation. To date, studies have investigated potassium intake supplementation over several weeks in healthy volunteers with variable results on vascular function.

View Article and Find Full Text PDF

Aldose Reductase: A Promising Therapeutic Target for High-Altitude Pulmonary Edema.

Int J Mol Sci

January 2025

Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China.

The Qinghai-Tibet Plateau, famously known as the "Roof of the World", has witnessed a surge in individuals traveling or working there. However, a considerable percentage of these individuals may suffer from acute mountain sickness (AMS), with high-altitude pulmonary edema (HAPE) being a severe and potentially life-threatening manifestation. HAPE disrupts the balance of intrapulmonary tissue fluid, resulting in severe lung function impairment.

View Article and Find Full Text PDF

Expert-Based Narrative Review on Compression UltraSonography (CUS) for Diagnosis and Follow-Up of Deep Venous Thrombosis (DVT).

Diagnostics (Basel)

January 2025

Research Center on Thromboembolic Diseases and Antithrombotic Treatment, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy.

Deep venous thrombosis (DVT) is a pathological condition that develops when a thrombus forms within the deep venous system. Typically, it involves the lower limbs and, less frequently, the upper extremities or other unusual districts such as cerebral or splanchnic veins. While leg DVT itself is rarely fatal and occasionally can lead to limb-threatening implications, its most fearsome complication, namely pulmonary embolism, is potentially fatal and significantly contributes to increased healthcare costs and impaired quality of life in affected patients and caregivers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!