Exosomes are responsible for cell-to-cell communication and serves as a valuable drug delivery vehicle. However, exosome heterogeneity, non-standardized isolation methods and proteomics/bioinformatics approaches limit its clinical applications. To better understand exosome heterogeneity, biological function and molecular mechanism of its biogenesis, secretion and uptake, techniques in proteomics or bioinformatics were applied to investigate human embryonic kidney cell (293T cell line)-derived exosome proteome and enable an integrative comparison of exosomal proteins and protein-protein interaction (PPI) networks of eleven exosome proteomes extracted from diverse human samples, including 293T (two datasets), dermal fibroblast, mesenchymal stem cell, thymic epithelial primary cell, breast cancer cell line (MDA-MB-231), patient neuroblastoma cell, plasma, saliva, serum and urine. Mapping of exosome biogenesis/secretion/uptake-related proteins onto exosome proteomes highlights exosomal origin-specific routes of exosome biogenesis/secretion/uptake and exosome-dependent intercellular communication. The finding provides insight into comparative exosome proteomes and its biogenesis, secretion and uptake, and potentially contributes to clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10930-023-10100-0 | DOI Listing |
Globally, there are 15 million stroke patients each year who have significant neurological deficits. Today, there are no treatments that directly address these deficits. With demographics shifting to an older population, the problem is worsening.
View Article and Find Full Text PDFiScience
January 2025
Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
Peritoneal carcinomatosis (PC) in gastric adenocarcinoma (GAC) is the most common metastatic site and leads to a short median survival. Exosomes have been shown to remodel the microenvironment, facilitating tumor metastases. However, the functional component in GAC cell-derived exosomes that remodel the landscape in the peritoneal cavity remains unclear.
View Article and Find Full Text PDFAnal Chem
January 2025
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
High-performance isolation of exosomes as a promising liquid biopsy target is of great importance for both fundamental research and clinical applications. This is, however, challenged by the prevalent heterogeneity of exosomes and the highly complex nature of biosamples. Here, we introduce the use of a CD81-targeting peptide as a building block for tailoring molecular baits for exosome isolation and payload analysis in clinical biofluids.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.
Osteoarthritis (OA) is a joint disease characterized by articular cartilage degradation. Persistent low-grade inflammation defines OA pathogenesis, with crucial involvement of pro-inflammatory M1-like macrophages. While mesenchymal stromal cells (MSC) and their small extracellular vesicles (sEV) hold promise for OA treatment, achieving consistent clinical-grade sEV products remains a significant challenge.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Military Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University, Chongqing 400038, China. Electronic address:
Uranium poisoning, particularly from exposure to Depleted Uranium (DU), occurs when uranyl ions enter the bloodstream and bind primarily to transferrin, osteopontin, and albumin before entering cells via corresponding receptors on renal tubular membranes, leading to cellular damage. Uranium poisoning remains a significant clinical challenge, with no ideal treatment currently available. In this study, we investigate the therapeutic potential of human umbilical cord-derived mesenchymal stem cell exosomes (MSC-EXs) in mice exposed to DU.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!