The TIMELESS effort for timely DNA replication and protection.

Cell Mol Life Sci

Department of Pharmacological Sciences, State University of New York at Stony Brook, Basic Sciences Tower 8-125, 101 Nicolls Rd, Stony Brook, NY, 11794, USA.

Published: March 2023

Accurate replication of the genome is fundamental to cellular survival and tumor prevention. The DNA replication fork is vulnerable to DNA lesions and damages that impair replisome progression, and improper control over DNA replication stress inevitably causes fork stalling and collapse, a major source of genome instability that fuels tumorigenesis. The integrity of the DNA replication fork is maintained by the fork protection complex (FPC), in which TIMELESS (TIM) constitutes a key scaffold that couples the CMG helicase and replicative polymerase activities, in conjunction with its interaction with other proteins associated with the replication machinery. Loss of TIM or the FPC in general results in impaired fork progression, elevated fork stalling and breakage, and a defect in replication checkpoint activation, thus underscoring its pivotal role in protecting the integrity of both active and stalled replication forks. TIM is upregulated in multiple cancers, which may represent a replication vulnerability of cancer cells that could be exploited for new therapies. Here, we discuss recent advances on our understanding of the multifaceted roles of TIM in DNA replication and stalled fork protection, and how its complex functions are engaged in collaboration with other genome surveillance and maintenance factors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9998586PMC
http://dx.doi.org/10.1007/s00018-023-04738-3DOI Listing

Publication Analysis

Top Keywords

dna replication
20
replication
10
replication fork
8
fork stalling
8
fork protection
8
protection complex
8
fork
7
dna
6
timeless effort
4
effort timely
4

Similar Publications

Expanding the genomic diversity of human anelloviruses.

Virus Evol

January 2025

MRC-University of Glasgow Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom.

Anelloviruses are a group of small, circular, single-stranded DNA viruses that are found ubiquitously across mammalian hosts. Here, we explored a large number of publicly available human microbiome datasets and retrieved a total of 829 anellovirus genomes, substantially expanding the known diversity of these viruses. The majority of new genomes fall within the three major human anellovirus genera: , and , while we also present new genomes of the under-sampled , and genera.

View Article and Find Full Text PDF

Homologous recombination (HR) is important for DNA damage tolerance during replication. The yeast Shu complex, a conserved homologous recombination factor, prevents replication-associated mutagenesis. Here we examine how yeast cells require the Shu complex for coping with MMS-induced lesions during DNA replication.

View Article and Find Full Text PDF

Nucleic Acids and Electrical Signals.

Rev Physiol Biochem Pharmacol

January 2025

Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.

Nucleic acids are highly charged, and electrical forces are involved heavily in how our DNA is compacted and packaged into such a small space, how chromosomes are formed, and how DNA damage is repaired. In addition, electrical forces are crucial to the formation of non-canonical DNA structures called G-Quadruplexes which play multiple biological roles.

View Article and Find Full Text PDF

PLK3 weakens antioxidant defense and inhibits proliferation of porcine Leydig cells under oxidative stress.

Sci Rep

January 2025

Department of Laboratory Animal Science, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China.

Aging is characterized by cellular degeneration and impaired physiological functions, leading to a decline in male sexual desire and reproductive capacity. Oxidative stress (OS) lead to testicular aging by impairing the male reproductive system, but the potential mechanisms remain unclear. In the present study, the functional status of testicular tissues from young and aged boars was compared, and the transcriptional responses of Leydig cells (LCs) to hydrogen peroxide (HO)-induced senescence were explored, revealing the role of OS in promoting aging of the male reproductive system.

View Article and Find Full Text PDF

Telomeres are hypersensitive to the formation of the common oxidative lesion 8-oxoguanine (8oxoG), which impacts telomere stability and function. OGG1 and MUTYH glycosylases initiate base excision repair (BER) to remove 8oxoG or prevent mutation. Here, we show OGG1 loss or inhibition, or MUTYH loss, partially rescues telomeric 8oxoG-induced premature senescence and associated proinflammatory responses, while loss of both glycosylases causes a near complete rescue in human fibroblasts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!