In this paper, a novel chemo-mechanical model is proposed for the description of the stretch-dependent chemical processes known as Bayliss effect and their impact on the active contraction in vascular smooth muscle. These processes are responsible for the adaptive reaction of arterial walls to changing blood pressure by which the blood vessels actively support the heart in providing sufficient blood supply for varying demands in the supplied tissues. The model is designed to describe two different stretch-dependent mechanisms observed in smooth muscle cells (SMCs): a calcium-dependent and a calcium-independent contraction. For the first one, stretch of the SMCs leads to an inlet of calcium ions which activates the myosin light chain kinase (MLCK). The increased activity of MLCK triggers the contractile units of the cells resulting in the contraction on a comparatively short time scale. For the calcium-independent contraction mechanism, stretch-dependent receptors of the cell membrane stimulate an intracellular reaction leading to an inhibition of the antagonist of MLCK, the myosin light chain phosphatase resulting in a contraction on a comparatively long time scale. An algorithmic framework for the implementation of the model in finite element programs is derived. Based thereon, it is shown that the proposed approach agrees well with experimental data. Furthermore, the individual aspects of the model are analyzed in numerical simulations of idealized arteries subject to internal pressure waves with changing intensities. The simulations show that the proposed model is able to describe the experimentally observed contraction of the artery as a reaction to increased internal pressure, which can be considered a crucial aspect of the regulatory mechanism of muscular arteries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10167144 | PMC |
http://dx.doi.org/10.1007/s10237-023-01700-x | DOI Listing |
Curr Mol Pharmacol
January 2025
Department of Cardiology, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu, China.
Aims: Cardiac fibrosis causes most pathological alterations of cardiomyopathy in diabetes and heart failure patients. The activation and transformation of cardiac fibroblasts (CFs) are the main pathological mechanisms of cardiac fibrosis. It has been established that Sirtuin1 (Sirt1) plays a protective role in the pathogenesis of cardiovascular disorders.
View Article and Find Full Text PDFBasic Clin Pharmacol Toxicol
February 2025
Department of Biomedicine, Aarhus University, Aarhus, Denmark.
The media-lumen diameter ratio of small arteries is increased in hypertension, diabetes and obesity. It is likely that both shear stress on the endothelial cells, transmural pressure and smooth muscle cell tone are important for the altered vascular structure. However, the precise interaction and importance of these factors are incompletely understood.
View Article and Find Full Text PDFRespir Res
January 2025
Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
Background: Obstructive sleep apnea (OSA) is frequently associated with increased incidence and mortality of pulmonary hypertension (PH). The immune response contributes to pulmonary artery remodeling and OSA-related diseases. The immunologic factors linked to OSA-induced PH are not well understood.
View Article and Find Full Text PDFBMC Urol
January 2025
Department of Urology and Institute of Urology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, People's Republic of China.
Purpose: This study aims to evaluate detrusor after contraction (DAC) characteristics in females with pure urodynamic stress incontinence (USI).
Methods: We examined the urodynamics database from our urodynamic study center. Urodynamic data from pure USI cases with and without DAC were compared.
ACS Nano
January 2025
Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, PR China.
Extracellular matrix (ECM)-based small-diameter vascular grafts (SDVGs, inner diameter (ID) < 6 mm) hold great promise for clinical applications. However, existing ECM-based SDVGs suffer from limited donor availability, complex purification, high cost, and insufficient mechanical properties. SDVGs with ECM-like structure and function, and good mechanical properties were rapidly prepared by optimizing common materials and preparation, which can improve their clinical prospects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!