Triphenylphosphine oxide promoting visible-light-driven C-C coupling desulfurization.

Chem Commun (Camb)

Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, USA.

Published: March 2023

Triphenylphosphine oxide (TPPO) and triphenylphosphine (TPP) can form a complex in solution, promoting visible light absorption to trigger electron transfer within the complex and generate radicals. Subsequent radical reactions with thiols enable desulfurization to produce carbon radicals that react with aryl alkenes to yield new C-C bonds. Since ambient oxygen can easily oxidize TPP to TPPO, the reported method requires no explicit addition of a photocatalyst. This work highlights the promise of using TPPO as a catalytic photo-redox mediator in organic synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cc00001jDOI Listing

Publication Analysis

Top Keywords

triphenylphosphine oxide
8
oxide promoting
4
promoting visible-light-driven
4
visible-light-driven c-c
4
c-c coupling
4
coupling desulfurization
4
desulfurization triphenylphosphine
4
oxide tppo
4
tppo triphenylphosphine
4
triphenylphosphine tpp
4

Similar Publications

Recent advances in redox flow batteries have made them a viable option for grid-scale energy storage, however they exhibit low energy density. One way to boost energy density is by increasing the cell potential using a nonaqueous system. Molecular engineering has proven to be an effective strategy to develop redox-active compounds with extreme potentials but these are usually challenged by resource sustainability of the newly developed redox materials.

View Article and Find Full Text PDF

Research on perovskite light-emitting diodes (PeLEDs) has primarily focused on modulating crystal growth to achieve smaller grain sizes and defect passivation using organic additives. However, challenges remain in controlling the intermolecular interactions between these organic additives and perovskite precursor ions for precise modulation of crystal growth. In this study, we synthesize two triphenylphosphine oxide (TPPO)-based multidentate additives: bidentate hexane-1,6-diyl-bis(oxy-4-triphenylphosphine oxide) (2-TPPO) and tetradentate pentaerythrityl-tetrakis(oxy-4-triphenylphosphine oxide) (4-TPPO).

View Article and Find Full Text PDF

Target and Nontarget Analysis of Organophosphorus Flame Retardants and Plasticizers in a River Impacted by Industrial Activity in Eastern China.

Environ Sci Technol

December 2024

MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.

Industrial activities are a major source of organophosphorus flame retardants (OPFRs) and plasticizers in aquatic environments. This study investigated the distribution of 40 OPFRs in a river impacted by major industrial manufacturing plants in Eastern China by target analysis. Nontarget analysis using high-resolution mass spectrometry was further employed to identify novel organophosphorus compounds (NOPs).

View Article and Find Full Text PDF

This study investigates the application of trioctylphosphine oxide (TOPO) and triphenylphosphine oxide (TPPO) as an additive to enhance the performance of all-inorganic CsPbBr perovskite solar cells (PSCs). The addition of TOPO and TPPO passivates surface defects, increases grain size, and reduces surface trap states, leading to better light absorption and accelerated carrier transport. These modifications lead to an optimized energy level distribution, resulting in a significant increase in power conversion efficiency from 5.

View Article and Find Full Text PDF

Synthesis and Characterization of Monomeric Triarylbismuthine Oxide.

Angew Chem Int Ed Engl

October 2024

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.

The synthesis and isolation of a bismuth-based analogue of the venerable triphenylphosphine oxide (PhPO) has remained a chimera to synthetic chemists for many years, due to its predicted high reactivity and instability. Through the hydrolysis of a cationic fluorotriarylbismuthonium(V) salt, we report here the isolation of unique hydroxytriarylbismuth(V) complexes, which served as precursor for the formation of the elusive monomeric triarylbismuthine oxide DippBi=O. Combined spectroscopic, crystallographic and computational studies provided insight into the bonding situation of the first monomeric triorganobismuth oxide complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!