Dual functionalized brush copolymers as versatile antifouling coatings.

J Mater Chem B

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.

Published: March 2023

Polymer coatings containing both fouling-resistant and fouling-release components have been reported to show synergistic antifouling properties. However, it remains unclear how the polymer composition influences the antifouling performance, particularly regarding foulants of different sizes and biological natures. Herein, we prepare dual functionalized brush copolymers containing fouling-resistant poly(ethylene glycol) (PEG) and fouling-release polydimethylsiloxane (PDMS) and examine their antifouling performances against different biofoulants. We utilize poly(pentafluorophenyl acrylate) (PPFPA) as a reactive precursor polymer and graft amine-functionalized PEG and PDMS side chains to create PPFPA--PEG--PDMS brush copolymers of systematically varying compositions. The copolymer films spin-coated on silicon wafers exhibit surface heterogeneity that can be correlated well with the bulk composition of the copolymer. When the copolymer-coated surfaces are examined against protein (human serum albumin and bovine serum albumin) adsorption and cell (lung cancer cells and microalgae) adhesion, they are found to perform better than the homopolymers. The enhanced antifouling properties are attributed to the copolymers having a PEG-rich top layer and a PEG/PDMS mixed bottom layer that work synergistically to resist biofoulant attachment. Furthermore, the composition of the best-performing copolymer is different for different foulants, with PPFPA--PEG--PDMS exhibiting the best antifouling properties against proteins and PPFPA--PEG--PDMS exhibiting the best antifouling properties against cells. We explain this difference by considering the changes in the length scale of the surface heterogeneity in relation to the foulant sizes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2tb02522aDOI Listing

Publication Analysis

Top Keywords

antifouling properties
16
brush copolymers
12
dual functionalized
8
functionalized brush
8
surface heterogeneity
8
serum albumin
8
ppfpa--peg--pdms exhibiting
8
exhibiting best
8
best antifouling
8
antifouling
7

Similar Publications

Introducing PES porous membrane to establish bionic autocrine channels: A lubricating, anti-wear antifouling coating.

Mar Pollut Bull

January 2025

Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, PR China; Dalian Key Laboratory of Internal Combustion Engine Tribology and Reliability Engineering, Dalian 116026, PR China. Electronic address:

As a global challenge, marine biofouling is causing serious economic losses and adverse ecological impacts. In recent years, a variety of promising and environmentally friendly anti-fouling strategies have emerged, among which the excellent anti-fouling performance of bionic autocrine coatings has been recognized. However, bionic autocrine coatings still suffer from uncontrollable secretion behavior, poor mechanical stability, and poor abrasion resistance.

View Article and Find Full Text PDF

Preparation of sulfur-doped porous carbon from polyphenylene sulfide waste for photothermal conversion materials to achieve solar-driven water evaporation.

Nanoscale

January 2025

College of Materials Science and Engineering, Hubei Provincial Engineering Research Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei, China.

In recent years, solar-driven photothermal water evaporation technology for seawater desalination and wastewater treatment has developed rapidly, which is of great significance for addressing the issue of freshwater scarcity. However, due to the high costs associated with the manufacturing, maintenance, and operation of such devices, their application remains challenging in remote and resource-scarce regions. Due to its excellent light absorption capability in the near-infrared region, high hydrophilicity, and stable chemical properties, coupled with the low cost of recycling waste carbonized polyphenylene sulfide, this material is an excellent choice as a photothermal material for solar-driven water evaporation devices.

View Article and Find Full Text PDF

Biological fouling seriously jeopardizes the development of the marine industry. Although hydrogels, as a kind of state-of-the-art antifouling material, have received wide attention, their mechanical strength is still relatively weak, and the synergistic antifouling method is comparatively single, thus limiting the performance of hydrogels. Here, a zwitterionic sulfobetaine methacrylate (SBMA)-acrylamide (AM)/sodium alginate (SA) double-network (DN) antifouling hydrogel with superb antifouling ability and outstanding mechanical properties was prepared by grafting MXene/Ag (M/Ag) and the powerful biocide polyhexamethylene biguanide (PHMB).

View Article and Find Full Text PDF

Poly(dimethylsiloxane) (PDMS) materials have been widely researched and applied as fouling-release coatings. Incorporation of silicone oils into PDMS has been shown to improve the antifouling properties of PDMS materials. In this research, we applied sum frequency generation (SFG) vibrational spectroscopy to study PDMS materials incorporated with various silicone oils containing phenyl groups in air, water, and protein solutions.

View Article and Find Full Text PDF

Self-Healing Superhydrophobic Coatings with Multiphase Repellence Property.

ACS Appl Mater Interfaces

January 2025

Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.

Developing versatile, scalable, and durable coatings that repel various matters in different service environments is of great importance for engineered materials applications but remains highly challenging. Here, the mesoporous silica microspheres (HMS) fabricated by the hard template method were utilized as micro-nanocontainers to encapsulate the hydrophobic agent of perfluorooctyltriethoxysilane (F13) and the corrosion inhibitor of benzotriazole (BTA), forming the functional microsphere of F-HMS(BTA). Moreover, the synthesized organosilane-modified silica sol adhesive (SMP) and F-HMS(BTA) were further employed as the binder and functional filler to construct a superhydrophobic self-healing coating of SMP@F-HMS(BTA) on various engineering metals through scalable spraying.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!