Background: Human social behavior is modulated by oxytocin (OT). Intranasal administration of OT (IN-OT) is a noninvasive route shown to elicit changes in the autonomic nervous system (ANS) activity; however, IN-OT's effect on the temporal profile of ANS activity at rest is yet to be described.
Aims: We aimed to describe the temporal profile of IN-OT at six 10-min time windows from 15- to 100-min post-administration in 20 male participants at rest while continuously recording their pupillary in an eyes-open condition and cardiac activity in eyes-open and eyes-closed conditions.
Methods: We used a double-blind, placebo-controlled, within-subjects design study where we extracted two proxies of parasympathetic nervous system (PNS) activity: high-frequency heart rate variability (HF-HRV) and pupillary unrest index (PUI); and a proxy of sympathetic nervous system activity: sample entropy of the pupillary unrest.
Results: In the eyes-open condition, we found an effect of IN-OT on the proxies of PNS activity: decreased PUI in the three-time windows post-administration spanning 65-100 min, and as an exploratory finding, an increased HF-HRV in the 80-85 min time window.
Conclusions: We suggest there is a role of OT in PNS regulation that may be consistent with OT's currently theorized role in the facilitation of alertness and approach behavior.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10291383 | PMC |
http://dx.doi.org/10.1177/02698811231158233 | DOI Listing |
Neurology
February 2025
Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia.
Determining the level of consciousness in patients with brain injury-and more fundamentally, establishing what they can experience-is ethically and clinically impactful. Patient behaviors may unreliably reflect their level of consciousness: a subset of unresponsive patients demonstrate covert consciousness by willfully modulating their brain activity to commands through fMRI or EEG. However, current paradigms for assessing covert consciousness remain fundamentally limited because they are insensitive, rely on imperfect assumptions of functional neuroanatomy, and do not reflect the spectrum of conscious experience.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218.
The hippocampal dentate gyrus (DG) is thought to orthogonalize inputs from the entorhinal cortex (pattern separation) and relay this information to the CA3 region. In turn, attractor dynamics in CA3 perform a pattern completion or error correction operation before sending its output to CA1. In a mouse model of congenital hypoplasia of the DG, a deficiency in the (Wls) gene, specifically in cells expressing , which targets neuronal progenitors, led to an almost total absence of dentate granule cells and modestly impaired performance in spatial tasks.
View Article and Find Full Text PDFJ Int Med Res
January 2025
Department of Gastroenterology and Hepatology, Henry Ford Hospital, Detroit, MI, United States.
Objectives: Central nervous system complications of acute pancreatitis (AP) can result in cerebral edema (CE). We assessed the risk of serious outcomes and health care features associated with CE in patients hospitalized with AP.
Methods: We conducted a retrospective cohort study using the National Inpatient Sample database.
JBJS Case Connect
January 2025
Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Bochum, Germany.
Case: We describe a 13-year-old adolescent girl experiencing persistent pain and reduced grip strength following nonoperative treatment of a medial epicondyle fracture-dislocation with closed reduction over 5 years before her referral to our clinic. Neurological examination and magnetic resonance imaging of the elbow revealed damage to the median nerve due to an entrapment within the elbow. Surgical release of the nerve resulted in complete pain relief and improved neurological function with normalized nerve conduction.
View Article and Find Full Text PDFCirc Res
January 2025
Division of Cardiovascular Medicine, Department of Medicine (J.B.H., J.D.B., A.C.D.), Vanderbilt University Medical Center, Nashville, TN.
Cardiovascular and cardiometabolic diseases are leading causes of morbidity and mortality worldwide, driven in part by chronic inflammation. Emerging research suggests that the bone marrow microenvironment, or marrow niche, plays a critical role in both immune system regulation and disease progression. The bone marrow niche is essential for maintaining hematopoietic stem cells (HSCs) and orchestrating hematopoiesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!