Understanding the piezocatalytic properties of the BaTiO(001) surface density functional theory.

Phys Chem Chem Phys

MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing 210094, China.

Published: March 2023

Piezoelectric materials have been reported to possess catalytic activity under mechanical excitation, such as by ultrasonic waves or collisions. Energy band theory (EBT) is often used to explain the piezocatalytic phenomenon caused by the strain-induced charge separation, but the correlation between the piezoelectric polarization and catalytic activity has still not been fully understood in early theoretical studies with the EBT model. To reveal the intrinsic connection between the piezoelectric feature and surface catalytic activity, in this work, we employ first-principles Density Functional Theory (DFT) to investigate the prototype piezocatalyst BaTiO (001) surface (BTO). Our simulation shows that the thickness of BTO has a significant impact on the band structure, polarization charge distribution and the surface work function of both positively and negatively polarized sides. As the driving force of piezocatalysis, the electrostatic potential difference (piezopotential) of the two sides shows strong a correlation with the band structure change under the applied strain, which determines the theoretical catalytic activity of BaTiO (001) for water splitting. Finally, we reveal the piezoelectric effects on the surface adsorption energy of H and OH species, which provide a new insight into the mechanism of piezocatalysis. Our work provides a new and in-depth physical insight into the fundamental mechanism of piezocatalysis, which may have important implications for the application of piezocatalysts in water treatment and renewable energy technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp05631cDOI Listing

Publication Analysis

Top Keywords

catalytic activity
16
density functional
8
functional theory
8
batio 001
8
band structure
8
mechanism piezocatalysis
8
surface
5
understanding piezocatalytic
4
piezocatalytic properties
4
properties batio001
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!