Experimentally conducted reactions between CO and various substrates (, ethylenediamine (EDA), ethanolamine (ETA), ethylene glycol (EG), mercaptoethanol (ME), and ethylene dithiol (EDT)) are considered in a computational study. The reactions were previously conducted under harsh conditions utilizing toxic metal catalysts. We computationally utilize Brønsted acidic ionic liquid (IL) [EtNH]HSO as a catalyst aiming to investigate and propose 'greener' pathways for future experimental studies. Computations show that EDA is the best to fixate CO among the tested substrates: the nucleophilic EDA attack on CO is calculated to have a very small energy barrier to overcome (TS1EDA, Δ = 1.4 kcal mol) and form I1EDA (carbamic acid adduct). The formed intermediate is converted to cyclic urea (PEDA, imidazolidin-2-one) ring closure and dehydration of the concerted transition state (TS2EDA, Δ = 32.8 kcal mol). Solvation model analysis demonstrates that nonpolar solvents (hexane, THF) are better for fixing CO with EDA. Attaching electron-donating and -withdrawing groups to EDA does not reduce the energy barriers. Modifying the IL changing the anion part (HSO) central S atom with 6 A and 5 A group elements (Se, P, and As) shows that a Se-based IL can be utilized for the same purpose. Molecular dynamics (MD) simulations reveal that the IL ion pairs can hold substrates and CO molecules noncovalent interactions to ease nucleophilic attack on CO.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp05877dDOI Listing

Publication Analysis

Top Keywords

brønsted acidic
8
acidic ionic
8
kcal mol
8
eda
5
computational predictions
4
predictions brønsted
4
ionic liquid-catalyzed
4
liquid-catalyzed carbon
4
carbon dioxide
4
dioxide conversion
4

Similar Publications

The enantioselective synthesis of 1,4-dicarbonyl compounds continues to pose a significant challenge in organic synthesis, and a catalytic process which generates two adjacent stereogenic centers with full stereochemical control is lacking until now. The 1,4-relationship of the functional groups requires an Umpolung strategy as one of the α-carbonyl positions has to be inverted into an electrophilic center to react with a normal enolate. We report herein the highly enantio- and diastereoselective addition of silyl ketene acetals toward electrophilic 1-azaallyl cations to furnish chiral 4-hydrazonoesters, which are masked 1,4-dicarbonyl compounds.

View Article and Find Full Text PDF

Bioactive Sulfonamides Derived from Amino Acids: Their Synthesis and Pharmacological Activities.

Mini Rev Med Chem

January 2025

Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University of Rome, 00161, Rome, Italy.

Currently, the synthesis of bioactive sulfonamides using amino acid as a starting reagent has become an area of research interest in organic chemistry. Over the years, an amine-sulfonyl chloride reaction has been adopted as a common step in traditional sulfonamide synthetic methods. However, recent developments have shown amino acids to be better precursors than amines in the synthesis of sulfonamides.

View Article and Find Full Text PDF

Current Perspectives of Diabetic Dyslipidemia and Treatment Modalities.

Curr Med Chem

January 2025

Cukurova University, Faculty of Medicine, Division of Endocrinology, Adana, Turkey.

Introduction: Diabetes mellitus is associated with an increased risk of atherosclerosis related to dyslipidemia. Although the terms hyperlipidemia and Diabetes Mellitus [DM] or diabetic dyslipidemia are interrelated to each other, these two conditions have some differences.

Aim: This study aimed to highlight possible mechanisms of hyperlipidemia and/or dyslipidemia in diabetic patients, which can be treated with available and newer hypolipidemic drugs.

View Article and Find Full Text PDF

Titanium dioxide nanoparticles (TiONPs) as an emerging pollutant in aquatic environments can interact with metals reducing or enhancing their toxicity in these environments. This study examined and compared the toxic effects of mercury ions (Hg ions) on immobilization percentage, fatty acid profile, and oxidative stress of nauplii, individually (Hg) and simultaneously in the presence of 0.10 mg.

View Article and Find Full Text PDF

The simulation of antral conditions for estimating drug apparent equilibrium solubility after a high-calorie, high-fat meal is challenging. In this study, (1) we measured the apparent equilibrium solubility of two model lipophilic drugs, ketoconazole and danazol, in antral aspirates collected at various time points after a minced high-calorie, high-fat meal and a glass of water 30 min after initiation of meal administration, and we designated one point estimate for ketoconazole and one point estimate for danazol; (2) we evaluated the usefulness of FeSSGF-V2 and FEDGAS pH = 3 in reproducing the two point estimates; (3) we evaluated potential compositions of FeSSGF-V3 that simulate the pH, the buffer capacity toward both less acidic and more acidic values, and the antral lipid and protein contents with easily accessible, commercially available products, and (4) we identified the most useful composition of FeSSGF-V3 for reproducing the two point estimates. For both model drugs, apparent solubility in FeSSGF-V2 and in FEDGAS pH 3 deviated substantially from the corresponding point estimate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!