Significant changes have occurred in plant cell wall composition during evolution and diversification of tracheophytes. As the sister lineage to seed plants, knowledge on the cell wall of ferns is key to track evolutionary changes across tracheophytes and to understand seed plant-specific evolutionary innovations. Fern cell wall composition is not fully understood, including limited knowledge of glycoproteins such as the fern arabinogalactan proteins (AGPs). Here, we characterize the AGPs from the leptosporangiate fern genera Azolla, Salvinia, and Ceratopteris. The carbohydrate moiety of seed plant AGPs consists of a galactan backbone including mainly 1,3- and 1,3,6-linked pyranosidic galactose, which is conserved across the investigated fern AGPs. Yet, unlike AGPs of angiosperms, those of ferns contained the unusual sugar 3-O-methylrhamnose. Besides terminal furanosidic arabinose, Ara (Araf), the main linkage type of Araf in the ferns was 1,2-linked Araf, whereas in seed plants 1,5-linked Araf is often dominating. Antibodies directed against carbohydrate epitopes of AGPs supported the structural differences between AGPs of ferns and seed plants. Comparison of AGP linkage types across the streptophyte lineage showed that angiosperms have rather conserved monosaccharide linkage types; by contrast bryophytes, ferns, and gymnosperms showed more variability. Phylogenetic analyses of glycosyltransferases involved in AGP biosynthesis and bioinformatic search for AGP protein backbones revealed a versatile genetic toolkit for AGP complexity in ferns. Our data reveal important differences across AGP diversity of which the functional significance is unknown. This diversity sheds light on the evolution of the hallmark feature of tracheophytes: their elaborate cell walls.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.16178DOI Listing

Publication Analysis

Top Keywords

cell wall
12
seed plants
12
fern cell
8
cell walls
8
arabinogalactan proteins
8
wall composition
8
linkage types
8
agps
7
ferns
6
fern
5

Similar Publications

Tuberculosis (TB) remains a major global threat, with 10 million new cases and 1.5 million deaths each year. In multidrug-resistant tuberculosis (MDR-TB), resistance is most commonly observed against isoniazid (INH) and rifampicin (RIF), the two frontline drugs.

View Article and Find Full Text PDF

Disrupted feeding and fasting cycles as well as chronic high fat diet (HFD)-induced obesity are associated with cardiovascular disease risk factors. We designed studies that determined whether two weeks of time-restricted feeding (TRF) intervention in mice fed a chronic HFD would reduce cardiovascular disease risk factors. Mice were fed a normal diet (ND; 10% fat) ad libitum or HFD (45% fat) for 18 weeks ad libitum to establish diet-induced obesity.

View Article and Find Full Text PDF

Description of sp. nov., isolated from pig faeces.

Int J Syst Evol Microbiol

January 2025

ABS Research Support Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea.

Two Gram-stain-negative cocci anaerobes were isolated from pig faeces and designated as strains YH-vei2232 and YH-vei2233. Phylogenetic analysis using 16S rRNA gene sequences revealed that the isolates were most closely related to KCTC 5967, with 97.0% similarity.

View Article and Find Full Text PDF

Lack of intracranial atherosclerosis in various atherosclerotic mouse models.

Vasc Biol

January 2025

M Daemen, Pathology, Amsterdam UMC Location AMC, Amsterdam, Netherlands.

Background: Although mice are used extensively to study atherosclerosis of different vascular beds, limited data is published on the occurrence of intracranial atherosclerosis. Since intracranial atherosclerosis is a common cause of stroke and is associated with dementia, a relevant animal model is needed to study these diseases.

Methods And Results: We examined the presence of intracranial atherosclerosis in different atherogenic mouse strains and studied differences in vessel wall characteristics in mouse and human tissue in search for possible explanations for the different atherosclerotic susceptibility between extracranial and intracranial vessels.

View Article and Find Full Text PDF

In Vivo Nanodiamond Quantum Sensing of Free Radicals in Caenorhabditis elegans Models.

Adv Sci (Weinh)

January 2025

Department of Biomaterials & Biomedical Technology (BBT), University Medical Centre Groningen (UMCG), Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands.

Free radicals are believed to play a secondary role in the cell death cascade associated with various diseases. In Huntington's disease (HD), the aggregation of polyglutamine (PolyQ) not only contributes to the disease but also elevates free radical levels. However, measuring free radicals is difficult due to their short lifespan and limited diffusion range.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!