During neurogenesis, the generation and differentiation of neuronal progenitors into inhibitory gamma-aminobutyric acid-containing interneurons is dependent on the combinatorial activity of transcription factors (TFs) and their corresponding regulatory elements (REs). However, the roles of neuronal TFs and their target REs in inhibitory interneuron progenitors are not fully elucidated. Here, we developed a deep-learning-based framework to identify enriched TF motifs in gene REs (eMotif-RE), such as poised/repressed enhancers and putative silencers. Using epigenetic datasets (e.g., ATAC-seq and H3K27ac/me3 ChIP-seq) from cultured interneuron-like progenitors, we distinguished between active enhancer sequences (open chromatin with H3K27ac) and non-active enhancer sequences (open chromatin without H3K27ac). Using our eMotif-RE framework, we discovered enriched motifs of TFs such as ASCL1, SOX4, and SOX11 in the active enhancer set suggesting a cooperativity function for ASCL1 and SOX4/11 in active enhancers of neuronal progenitors. In addition, we found enriched ZEB1 and CTCF motifs in the non-active set. Using an enhancer assay, we showed that most of the tested putative REs from the non-active enhancer set have no enhancer activity. Two of the eight REs (25%) showed function as poised enhancers in the neuronal system. Moreover, mutated REs for ZEB1 and CTCF motifs increased their activity as enhancers indicating a repressive effect of ZEB1 and CTCF on these REs that likely function as repressed enhancers or silencers. Overall, our work integrates a novel framework based on deep learning together with a functional assay that elucidated novel functions of TFs and their corresponding REs. Our approach can be applied to better understand gene regulation not only in inhibitory interneuron differentiation but in other tissue and cell types.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9986276PMC
http://dx.doi.org/10.3389/fcell.2023.1034604DOI Listing

Publication Analysis

Top Keywords

inhibitory interneuron
12
zeb1 ctcf
12
transcription factors
8
corresponding regulatory
8
regulatory elements
8
interneuron differentiation
8
neuronal progenitors
8
tfs corresponding
8
res
8
enriched motifs
8

Similar Publications

GABAergic Progenitor Cell Graft Rescues Cognitive Deficits in Fragile X Syndrome Mice.

Adv Sci (Weinh)

January 2025

Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.

Fragile X syndrome (FXS) is an inherited neurodevelopmental disorder characterized by a range of clinical manifestations with no effective treatment strategy to date. Here, transplantation of GABAergic precursor cells from the medial ganglionic eminence (MGE) is demonstrated to significantly improve cognitive performance in Fmr1 knockout (KO) mice. Within the hippocampus of Fmr1-KO mice, MGE-derived cells from wild-type donor mice survive, migrate, differentiate into functionally mature interneurons, and form inhibitory synaptic connections with host pyramidal neurons.

View Article and Find Full Text PDF

Unipolar brush cells (UBCs) are excitatory interneurons in the cerebellar cortex that receive mossy fiber (MF) inputs and excite granule cells. The UBC population responds to brief burst activation of MFs with a continuum of temporal transformations, but it is not known how UBCs transform the diverse range of MF input patterns that occur in vivo. Here, we use cell-attached recordings from UBCs in acute cerebellar slices to examine responses to MF firing patterns that are based on in vivo recordings.

View Article and Find Full Text PDF

Background: There is a critical time window of post-stroke neuroplasticity when spontaneous behavioral recovery occurs. Potential factors responsible for this heightened plasticity are the reduction of parvalbumin-immunoreactive (PV+) interneuron inhibitory signaling and the disappearance of extracellular matrix synaptic stabilizers called perineuronal net(s; PNN/PNNs).

Objective: This study investigated whether behavioral recovery during this critical period following stroke is associated with changes in densities of PV+ interneurons and PNNs.

View Article and Find Full Text PDF

Background And Objectives: Autoantibodies (aAbs) against glycine receptors (GlyRs) are mainly associated with the rare neurologic diseases stiff person syndrome (SPS) and progressive encephalomyelitis with rigidity and myoclonus (PERM). GlyR aAbs are also found in other neurologic diseases such as epilepsy. The aAbs bind to different GlyR α-subunits and, more rarely, also to the GlyR β-subunit.

View Article and Find Full Text PDF

Mapping alterations in the local synchrony of the cerebral cortex in Prader Willi syndrome.

J Psychiatr Res

January 2025

Endocrinology and Nutrition Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Medicine Department, Universitat Autònoma de Barcelona, 08208, Sabadell, Spain.

Individuals with Prader Willi syndrome (PWS) often exhibit behavioral difficulties characterized by deficient impulse regulation and obsessive-compulsive features resembling those observed in obsessive-compulsive disorder. The genetic configuration of PWS aligns with molecular and neurophysiological findings suggesting dysfunction in the inhibitory gamma-aminobutyric acid (GABA) interneuron system may contribute to its clinical manifestation. In the cerebral cortex, this dysfunction is expressed as desynchronization of local neural activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!