Perovskite devices can play a critical role as tunable semi-transparent photovoltaics managing the buildings' energy health for energy harvesting, storage and utilization. Here we report ambient semi-transparent PSCs with novel graphitic carbon/NiO-based hole transporting electrodes having variable thicknesses achieving a highest efficiency of ∼14%. On the other hand, the altered thickness produced the highest average visible transparency (AVT) of the devices, nearly 35%, which also influenced other glazing-related parameters. This study envisages the impact of the electrode deposition technique on indispensable parameters like colour rendering index, correlated colour temperature, and solar factor evaluated using theoretical models to illuminate these CPSCs' colour and thermal comfort for BIPV integration. The solar factor value between 0 to 1, CRI value >80 and CCT value >4000 K make it a significant semi-transparent device. This research work suggests a possible approach to fabricating carbon-based PSC for high-performance semi-transparent solar cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9987580 | PMC |
http://dx.doi.org/10.1039/d2ra08198a | DOI Listing |
Commun Chem
December 2024
Anorganische Chemie, Universität Göttingen, Göttingen, Germany.
The search for stable compounds containing an antiaromatic cyclic 4π system is a challenge for inventive chemists that can look back on a long history. Here we report the isolation and characterization of the novel 4π-electron tetrasilacyclobutadiene, an analogue of a 4π neutral cyclobutadiene that exhibits surprising features of a Möbius-type aromatic ring. Reduction of RSiCl (R = (Pr)PCH) with KC in the presence of cycloalkyl amino-carbene (cAAC) led to the formation of corresponding silylene 1.
View Article and Find Full Text PDFEnviron Res
December 2024
College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, PR China. Electronic address:
This work developed a novel oxidized hierarchical porous carbon (OHPC) with vesicule-like ultrathin graphitic walls via a method of air oxidation and used as an efficient adsorbent for Congo red (CR) and Malachite green (MG) removal. Results show that the OHPC2 oxidized at 400 °C possesses three-dimensional hierarchical pores with vesicule-like ultrathin graphitic walls. The prepared OHPC2 not only has a large specific surface area of 1020 m g with a high pore volume, but also has abundant oxygen-containing functional groups.
View Article and Find Full Text PDFSci Rep
December 2024
ICAR-Indian Grassland and Fodder Research Institute, Jhansi, 284 003, India.
Sugarcane is a major industrial crop highly susceptible to parasitic weed (Striga spp.), causing a 38% reduction in cane yield due to a longer lag phase of 20-40 days, and wider spacing. Herbicides with a longer retention and slow-release nature could allow Striga seeds to germinate and be killed before attaching to the host.
View Article and Find Full Text PDFMikrochim Acta
December 2024
School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.
A novel carbon-based light-addressable potentiometric aptasensor (C-LAPS) was constructed for detection low-density lipoprotein (LDL) in serum. Carboxylated TiC MXene @reduced graphene oxide (C-MXene@rGO) was used as interface and o-phenylenediamine functionalized nitrogen-doped graphene quantum dots (OPD@NGQDs) as the photoelectric conversion element. The photosensitive layers composed of OPD@NGQDs/C-MXene@rGO exhibit superior photoelectric conversion efficiency and excellent biocompatibility, which contribute to an improved response signal.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
In order to identify carcinoembryonic antigen (CEA) in serum samples, an innovative smartphone-based, label-free electrochemical immunosensor was created without the need for additional labels or markers. This technology presents a viable method for on-site cancer diagnostics. The novel smartphone-integrated, label-free immunosensing platform was constructed by nanostructured materials that utilize the layer-by-layer (LBL) assembly technique, allowing for meticulous control over the interface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!