Reperfusion is essential for ischemic myocardium but paradoxically leads to myocardial damage that worsens cardiac functions. Ferroptosis often occurs in cardiomyocytes during ischemia/reperfusion (I/R). The SGLT2 inhibitor dapagliflozin (DAPA) exerts cardioprotective effects independent of hypoglycemia. Here, we investigated the effect and potential mechanism of DAPA against myocardial ischemia/reperfusion injury (MIRI)-related ferroptosis using the MIRI rat model and hypoxia/reoxygenation (H/R)-induced H9C2 cardiomyocytes. Our results show that DAPA significantly ameliorated myocardial injury, reperfusion arrhythmia, and cardiac function, as evidenced by alleviated ST-segment elevation, ameliorated cardiac injury biomarkers including cTnT and BNP and pathological features, prevented H/R-triggered cell viability loss . and experiments showed that DAPA inhibited ferroptosis by upregulating the SLC7A11/GPX4 axis and FTH and inhibiting ACSL4. DAPA notably mitigated oxidative stress, lipid peroxidation, ferrous iron overload, and reduced ferroptosis. Subsequently, network pharmacology and bioinformatics analysis suggested that the MAPK signaling pathway was a potential target of DAPA and a common mechanism of MIRI and ferroptosis. DAPA treatment significantly reduced MAPK phosphorylation and , suggesting that DAPA might protect against MIRI by reducing ferroptosis through the MAPK signaling pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9986553 | PMC |
http://dx.doi.org/10.3389/fphar.2023.1078205 | DOI Listing |
Front Oncol
January 2025
The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China.
Introduction: Gliomas, particularly glioblastomas (GBM), are highly aggressive with a poor prognosis and low survival rate. Currently, deoxyelephantopin (DET) has shown promising anti-inflammatory and anti-tumor effects. Using clinical prognostic analysis, molecular docking, and network pharmacology, this study aims to explore the primary targets and signaling pathways to identify novel GBM treatment approaches.
View Article and Find Full Text PDFJ Tradit Complement Med
November 2024
Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
Diabetes mellitus and its debilitating microvascular complications, including diabetic neuropathy and nephropathy, represent a growing global health burden. Despite advances in conventional therapies, their suboptimal efficacy and adverse effects necessitate exploring complementary and alternative medicine approaches. , a coniferous tree species native to eastern North America, has gained significant attention for its potential therapeutic applications in various disorders, attributed to its rich phytochemical composition.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Wuxi School of Medicine, Jiangnan University, Wuxi, China.
Background: Prostate cancer was the fourth most diagnosed cancer worldwide in 2022. Radical treatments and androgen deprivation therapy benefit newly diagnosed patients but impact quality of life, often leading to castration-resistant prostate cancer. Short-term dietary changes significantly affect the gut microbiota, which differs markedly between prostate cancer patients and healthy individuals, impacting both cancer progression and treatment response.
View Article and Find Full Text PDFTzu Chi Med J
July 2024
Pharmacy College, Gannan Medical University, Ganzhou, Jiangxi, China.
Objectives: This study aimed to explore the potential mechanisms of TMF (5,7,3',4'-tetramethoxyflavone) in treating osteoarthritis (OA) using network pharmacology and molecular docking.
Materials And Methods: Databases including SwissTargetPrediction, BATMAN-TCM, PharmMapper, TargetNet, SuperPred, and SEA were utilized to screen the targets of TMF. "OA" was used as the disease keyword to predict OA-related genes through GeneCards, Therapeutic Target Database, PharmGKB, Online Mendelian Inheritance in Man, and Comparative Toxicogenomics Database.
Mater Today Bio
February 2025
Kunming Institute of Zoology, Chinese Academy of Sciences, PR China.
The early treatment of Osteonecrosis of Femoral Head (ONFH) remains a clinical challenge. Conventional Bone Marrow Mesenchymal Stem Cell (BMSC) injection methods often result in unsatisfactory outcomes due to mechanical cell damage, low cell survival and retention rates, inadequate cell matrix accumulation, and poor intercellular interaction. In this study, we employed a novel cell carrier material termed "3D Microscaffold" to deliver BMSCs, addressing these issues and enhancing the therapeutic effects of cell therapy for ONFH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!