Nucleocapsid (NC) assembly is an essential step of the virus replication cycle. It ensures genome protection and transmission among hosts. Flaviviruses are human viruses for which envelope structure is well known, whereas no information on NC organization is available. Here we designed a dengue virus capsid protein (DENVC) mutant in which a highly positive spot conferred by arginine 85 in α4-helix was replaced by a cysteine residue, simultaneously removing the positive charge and restricting the intermolecular motion through the formation of a disulfide cross-link. We showed that the mutant self-assembles into capsid-like particles (CLP) in solution without nucleic acids. Using biophysical techniques, we investigated capsid assembly thermodynamics, showing that an efficient assembly is related to an increased DENVC stability due to α4/α4' motion restriction. To our knowledge, this is the first time that flaviviruses' empty capsid assembly is obtained in solution, revealing the R85C mutant as a powerful tool to understand the NC assembly mechanism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9986514 | PMC |
http://dx.doi.org/10.1016/j.isci.2023.106197 | DOI Listing |
Front Immunol
January 2025
Infectious Disease Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University of Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.
Due to their widespread geographic distribution and frequent outbreaks, mosquito-borne flaviviruses, such as DENV (DENV), Zika virus (ZIKV), Japanese encephalitis virus (JEV), yellow fever virus (YFV), and West Nile virus (WNV), are considered significant global public health threats and contribute to dramatic socioeconomic imbalances worldwide. The global prevalence of these viruses is largely driven by extensive international travels and ecological disruptions that create favorable conditions for the breeding of and species, the mosquito vectors responsible for the spread of these pathogens. Currently, vaccines are available for only DENV, YFV, and JEV, but these face several challenges, including safety concerns, lengthy production processes, and logistical difficulties in distribution, especially in resource-limited regions, highlighting the urgent need for innovative vaccine approaches.
View Article and Find Full Text PDFVirus Evol
December 2024
Department of Epidemiology and Population Health, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, United States.
Despite the increasing burden of dengue in Kenya and Africa, the introduction and expansion of the virus in the region remain poorly understood. The objective of this study is to examine the genetic diversity and evolutionary histories of dengue virus (DENV) serotypes 1 and 3 in Kenya and contextualize their circulation within circulation dynamics in the broader African region. Viral RNA was extracted from samples collected from a cohort of febrile patients recruited at clinical sites in Kenya from 2013 to 2022.
View Article and Find Full Text PDFActa Trop
January 2025
Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy.
The Anthropocene era is marked by unprecedented human-induced alterations to the environment, resulting in a climate emergency and widespread ecological deterioration. A staggering number of up to one million species of plants and animals are in danger of becoming extinct, which includes over 10% of insect species and 40% of plant species. Unrestrained release of greenhouse gases, widespread deforestation, intense agricultural practices, excessive fishing, and alterations in land use have exceeded the ecological boundaries that were once responsible for humanity's wellbeing.
View Article and Find Full Text PDFJ Vector Borne Dis
January 2025
State Virology Laboratory, Department of Microbiology, Gandhi Medical College, Bhopal, Madhya Pradesh, India.
Background Objectives: Co-infection of dengue virus and acute hepatitis A virus in paediatric population is a major health concern in endemic countries. This cross sectional retrospective study was conducted to evaluate the prevalence of hepatitis A virus among the clinically dengue suspected paediatric cases presented at our tertiary care centre during the two-year period (2022-2023).
Methods: A total of 747 dengue suspected paediatric clinical specimens were included in this study.
iScience
January 2025
Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada.
During infection, dengue virus (DENV) and Zika virus (ZIKV), two (ortho)flaviviruses of public health concern worldwide, induce alterations of mitochondria morphology to favor viral replication, suggesting a viral co-opting of mitochondria functions. Here, we performed an extensive transmission electron microscopy-based quantitative analysis to demonstrate that both DENV and ZIKV alter endoplasmic reticulum-mitochondria contact sites (ERMC). This correlated at the molecular level with an impairment of ERMC tethering protein complexes located at the surface of both organelles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!