Cyanuric acid (CA) is reported to induce nephrotoxicity but its toxic effect is not fully known. Prenatal CA exposure causes neurodevelopmental deficits and abnormal behavior in spatial learning ability. Dysfunction of the acetyl-cholinergic system in neural information processing is correlated with spatial learning impairment and was found in the previous reports of CA structural analogue melamine. To further investigate the neurotoxic effects and the potential mechanism, the acetylcholine (ACh) level was detected in the rats which were exposed to CA during the whole of gestation. Local field potentials (LFPs) were recorded when rats infused with ACh or cholinergic receptor agonist into hippocampal CA3 or CA1 region were trained in the Y-maze task. We found the expression of ACh in the hippocampus was significantly reduced in dose-dependent manners. Intra-hippocampal infusion of ACh into the CA1 but not the CA3 region could effectively mitigate learning deficits induced by CA exposure. However, activation of cholinergic receptors did not rescue the learning impairments. In the LFP recording, we found that the hippocampal ACh infusions could enhance the values of phase synchronization between CA3 and CA1 regions in theta and alpha oscillations. Meanwhile, the reduction in the coupling directional index and the strength of CA3 driving CA1 in the CA-treated groups was also reversed by the ACh infusions. Our findings are consistent with the hypothesis and provide the first evidence that prenatal CA exposure induced spatial learning defect is attributed to the weakened ACh-mediated neuronal coupling and NIF in the CA3-CA1 pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1177/09603271231163477DOI Listing

Publication Analysis

Top Keywords

spatial learning
16
cyanuric acid
8
exposure induced
8
induced spatial
8
learning impairments
8
prenatal exposure
8
ca3 ca1
8
ach infusions
8
learning
6
ach
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!