Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ordinal data in a repeated measures design of a crossover study for rare diseases usually do not allow for the use of standard parametric methods, and hence, nonparametric methods should be considered instead. However, only limited simulation studies in settings with small sample sizes exist. Therefore, starting from an Epidermolysis Bullosa simplex trial with the above-mentioned design, a rank-based approach using the R package nparLD and different generalized pairwise comparisons (GPC) methods were compared impartially in a simulation study. The results revealed that there was not one single best method for this particular design, because a trade-off exists between achieving high power, accounting for period effects, and for missing data. Specifically, nparLD as well as the unmatched GPC approaches do not address crossover aspects, and the univariate GPC variants partly ignore the longitudinal information. The matched GPC approaches, on the other hand, take the crossover effect into account in the sense of incorporating the within-subject association. Overall, the prioritized unmatched GPC method achieved the highest power in the simulation scenarios, although this may be due to the specified prioritization. The rank-based approach yielded good power even at a sample size of , whereas the matched GPC method could not control the type I error.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bimj.202200236 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!