Cyclic tensile force modifies calvarial osteoblast function via the interplay between ERK1/2 and STAT3.

BMC Mol Cell Biol

State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Published: March 2023

Background: Mechanical therapies, such as distraction osteogenesis, are widely used in dental clinics. During this process, the mechanisms by which tensile force triggers bone formation remain of interest. Herein, we investigated the influence of cyclic tensile stress on osteoblasts and identified the involvement of ERK1/2 and STAT3.

Materials And Methods: Rat clavarial osteoblasts were subjected to tensile loading (10% elongation, 0.5 Hz) for different time periods. RNA and protein levels of osteogenic markers were determined using qPCR and western blot after inhibition of ERK1/2 and STAT3. ALP activity and ARS staining revealed osteoblast mineralization capacity. The interaction between ERK1/2 and STAT3 was investigated by immunofluorescence, western blot, and Co-IP.

Results: The results showed that tensile loading significantly promoted osteogenesis-related genes, proteins and mineralized nodules. In loading-induced osteoblasts, inhibition of ERK1/2 or STAT3 decreased osteogenesis-related biomarkers significantly. Moreover, ERK1/2 inhibition suppressed STAT3 phosphorylation, and STAT3 inhibition disrupted the nuclear translocation of pERK1/2 induced by tensile loading. In the non-loading environment, inhibition of ERK1/2 hindered osteoblast differentiation and mineralization, while STAT3 phosphorylation was elevated after ERK1/2 inhibition. STAT3 inhibition also increased ERK1/2 phosphorylation, but did not significantly affect osteogenesis-related factors.

Conclusion: Taken together, these data suggested that ERK1/2 and STAT3 interacted in osteoblasts. ERK1/2-STAT3 were sequentially activated by tensile force loading, and both affected osteogenesis during the process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9996996PMC
http://dx.doi.org/10.1186/s12860-023-00471-8DOI Listing

Publication Analysis

Top Keywords

erk1/2 stat3
20
tensile force
12
tensile loading
12
inhibition erk1/2
12
erk1/2
10
stat3
9
cyclic tensile
8
western blot
8
erk1/2 inhibition
8
stat3 phosphorylation
8

Similar Publications

SHP2 inhibition reduces somatotroph tumor growth in a pre-clinical model.

Neuro Oncol

March 2025

Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.

Background: In somatotroph tumors, over 50% of patients do not respond satisfactorily to the octreotide (OCT) treatment. Stimulation of SSTR2 with OCT triggers anti-proliferative signaling pathways mediated by the phosphatase SHP2. This phosphatase can exercise its functions through the STAT3, with the SHP2/STAT3 subcellular localization being crucial for understanding its mechanisms of action.

View Article and Find Full Text PDF

Background: Hypertension is the most common cause of pathological left ventricular hypertrophy, a condition causally associated with debilitating heart failure and cardiovascular events in hypertensive patients. It is well recognized that the disease burden of hypertension-linked heart failure remains unabated with existing treatments. New therapies controlling hypertensive left ventricular hypertrophy are thus required to decelerate or prevent the development of heart failure.

View Article and Find Full Text PDF

Background And Purpose: Shwachman-Diamond Syndrome (SDS) is an autosomal recessive disease belonging to the inherited bone marrow failure syndromes and characterized by hypocellular bone marrow, exocrine pancreatic insufficiency, and skeletal abnormalities. SDS is associated with increased risk of developing myelodysplastic syndrome (MDS) and/or acute myeloid leukemia (AML). Although SDS is not primarily considered an inflammatory disorder, some of the associated conditions (e.

View Article and Find Full Text PDF

Aberrant activation of the mTOR signaling pathway in Rasmussen encephalitis.

Sci Rep

February 2025

Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, 50 Xiang Shan Yi-Ke-Song, Haidian District, Beijing, 100093, China.

This study aimed to delineate the mechanistic target of the rapamycin (mTOR) pathway in the brain tissue of patients with Rasmussen encephalitis (RE) compared to individuals without epilepsy and those with focal cortical dysplasia (FCD) to identify unique pathogenic mechanisms and potential therapeutic targets. Experimental analysis was conducted using RE, control and FCD tissue samples obtained through surgical resection. Western blotting was performed to quantify the expression of established markers of mTOR upstream or downstream signaling.

View Article and Find Full Text PDF

The concurrent targeting of Fms-like tyrosine kinase 3 (FLT3)/VEGFR2/Histone deacetylase (HDAC) represents a novel and promising therapeutic strategy for acute myeloid leukemia. In this work, we hybridized essential pharmacophores from sorafenib and SAHA (vorinostat) and then conducted structure-activity relationship studies to identify two lead compounds and that potently inhibit FLT3, VEGFR2, and HDAC in a nanomolar range. In cell evaluation, compounds and exhibited potent proliferative activities against a panel of leukemia cells including MV4-11 and MOLM-13.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!