Isoprenoids, a large kind of plant natural products, are synthesized by the mevalonate (MVA) pathway in the cytoplasm and the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway in plastids. As one of the rate-limiting enzymes in the MVA pathway of soybean (Glycine max), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is encoded by eight isogenes (GmHMGR1-GmHMGR8). To begin, we used lovastatin (LOV), a specific inhibitor of GmHMGR, to investigate their role in soybean development. To further investigate, we overexpressed the GmHMGR4 and GmHMGR6 genes in Arabidopsis thaliana. The growth of soybean seedlings, especially the development of lateral roots, was inhibited after LOV treatment, accompanied by a decrease in sterols content and GmHMGR gene expression. After the overexpression of GmHMGR4 and GmHMGR6 in A. thaliana, the primary root length was higher than the wild type, and total sterol and squalene contents were significantly increased. In addition, we detected a significant increase in the product tocopherol from the MEP pathway. These results further support the fact that GmHMGR1-GmHMGR8 play a key role in soybean development and isoprenoid biosynthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9995466PMC
http://dx.doi.org/10.1038/s41598-023-30797-4DOI Listing

Publication Analysis

Top Keywords

3-hydroxy-3-methylglutaryl coenzyme
8
coenzyme reductase
8
glycine max
8
isoprenoid biosynthesis
8
mva pathway
8
mep pathway
8
role soybean
8
soybean development
8
gmhmgr4 gmhmgr6
8
reductase genes
4

Similar Publications

Effect of cholesterol metabolism on hepatolithiasis.

World J Gastroenterol

January 2025

Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, No. 215 Heping West Road, Shijiazhuang 050000, Hebei Province, China.

Surgical intervention is currently the primary treatment for hepatolithiasis; however, some patients still experience residual stones and high recurrence rates after surgery. Cholesterol metabolism seems to play an important role in hepatolithiasis pathogenesis. A high cholesterol diet is one of the significant reasons for the increasing incidence of hepatolithiasis.

View Article and Find Full Text PDF

Metabolic alterations are commonly associated with various cancers and are recognized as contributing factors to cancer progression, invasion, and metastasis. Drug repurposing, a strategy in drug discovery, utilizes existing knowledge to recommend established drugs for new indications based on clinical data or biological evidence. This approach is considered a less risky alternative to traditional drug development.

View Article and Find Full Text PDF

Statins (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) play a vital role in managing and preventing cardiovascular disease, particularly in elderly populations who face elevated risks for atherosclerosis and related conditions. This review delves into the mechanisms of statin action, emphasizing their impact on low-density lipoprotein cholesterol levels, anti-inflammatory properties, and potential genetic factors influencing efficacy and drug tolerability. Consideration is given to statin intolerance and management strategies, drug interactions, and guidelines for primary and secondary prevention of cardiovascular events.

View Article and Find Full Text PDF

Identification of 3-hydroxy-3-methylglutaryl monoacyl-coenzyme A reductase (HMGR) associated with the synthesis of terpenoids in Santalum album L.

Gene

March 2025

Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou 510650, China. Electronic address:

Santalum album is an economically important plant in the craft, spices and medicine industries. The main chemical constituents found in sandalwood essential oils are sesquiterpenes. 3-Hydroxy-3-methylglutaryl monoacyl-coenzyme A reductase (HMGR) is one of the rate-limiting enzymes required for the synthesis of sandal sesquiterpenes, but there are no studies on the HMGR gene in S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!