Synthetic esters are used as lubricants for applications at high temperatures, but their development can be a trial and error process. In this context, molecular dynamics simulations could be used as a tool to investigate the properties of new lubricants, in particular viscosity. We employ nonequilibrium molecular dynamics (NEMD) simulations to predict bulk Newtonian viscosities of a set of mixtures of two esters, di(2-ethylhexyl) sebacate (DEHS) and di(2-ethylhexyl) adipate (DEHA) at 293 and 343 K as well as equilibrium molecular dynamics (EMD) and NEMD at 393 K and compare these to experimental measurements. The simulations predict mixture densities within 5% of the experimental values, and we are able to retrieve between 99% and 75% of the experimental viscosities for all ranges of temperature. Experimental viscosities show a linear trend which we are able to capture using NEMD at low temperature and EMD at high temperature. Our work shows that, using EMD and NEMD simulations, and the workflows we developed, we can obtain reliable estimates of the viscosities of mixtures of industrially relevant ester-based lubricants at different temperatures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10041636PMC
http://dx.doi.org/10.1021/acs.jpcb.2c08553DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
12
viscosities mixtures
8
ester-based lubricants
8
lubricants temperatures
8
nemd simulations
8
simulations predict
8
emd nemd
8
experimental viscosities
8
computing viscosities
4
mixtures ester-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!