Ganoderma sp. contains high amounts of diverse triterpenoids; however, few triterpenoid saponins could be isolated from the medicinal fungus. To produce novel Ganoderma triterpenoid saponins, biotransformation-guided purification (BGP) process was applied to a commercial Ganoderma extract. The commercial Ganoderma extract was partially separated into three fractions by preparative high-performance liquid chromatography, and the separated fractions were then directly biotransformed by a Bacillus glycosyltransferase (BsUGT489). One of the biotransformed products could be further purified and identified as a novel saponin: ganoderic acid C2 (GAC2)-3-O-β-glucoside by nucleic magnetic resonance (NMR) and mass spectral analyses. Based on the structure of the saponin, the predicted precursor should be the GAC2, which was confirmed to be biotransformed into four saponins, GAC2-3-O-β-glucoside, GAC2-3,15-O-β-diglucoside and two unknown GAC2 monoglucosides, revealed by NMR and mass spectral analyses. GAC2-3-O-β-glucoside and GAC2-3,15-O-β-diglucoside possessed 17-fold and 200-fold higher aqueous solubility than that of GAC2, respectively. In addition, GAC2-3-O-β-glucoside retained the most anti-α-glucosidase activity of GAC2 and was comparable with that of the anti-diabetes drug (acarbose). The present study showed that the BGP process is an efficient strategy to survey novel and bioactive molecules from crude extracts of natural products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiosc.2023.02.004 | DOI Listing |
Biomed Eng Online
December 2024
Department of Stem Cells Technology and Tissue Regeneration, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran, 15614, Iran.
Chemotherapy-induced cardiotoxicity is a significant concern in cancer treatment, as certain chemotherapeutic agents can have adverse effects on the cardiovascular system. This can lead to a range of cardiac complications, including heart failure, arrhythmias, myocardial dysfunction, pericardial complications, and vascular toxicity. Strategies to mitigate chemotherapy-induced cardiotoxicity may include the use of cardioprotective agents (e.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Key Laboratory for Molecular Medicine and Chinese Medicine Preparations, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China. Electronic address:
Ulcerative colitis is a chronic idiopathic inflammatory disease that impacts the mucous membrane of the colon. Lately, the incidence and prevalence of UC has been increasing globally. However, there are significant side effects of existing drugs for UC intervention.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Nephrology, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi, China.
Renal tubular epithelial cell injury is an important manifestation of chronic kidney disease (CKD). This study aims to explore the mechanism of astragaloside IV (AS-IV) in the treatment of UII-mediated renal tubular epithelial cell injury by integrating network pharmacology and experimental validation. BATMAN, SwissTarget-Prediction and ETCM data bases were used to screen the target proteins of AS-IV.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
October 2024
Institute of Basic Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences Beijing 100091, China National Clinical Research Center for Chinese Medicine Cardiology Beijing 100091, China.
This study investigated the mechanism by which ginsenoside Rg_(1 )attenuates hypoxia/reoxygenation(H/R) injury in HL-1 cardiomyocytes by inhibiting the acetylation of ATP synthase subunit alpha(ATP5A1) through silent information regulator 3(SIRT3). In this study, an H/R injury model was constructed by hypoxia for 6 h and reoxygenation for 2 h in HL-1 cardiomyocytes. First, the optimal effective concentration of ginsenoside Rg_1 was determined using a cell viability assay kit.
View Article and Find Full Text PDFData Brief
December 2024
Kasetsart University, Sriracha, Thailand.
is a significant medicinal herb extensively used in traditional oriental medicine and gaining global popularity. The primary constituents of leaves are triterpenoid saponins, which are predominantly believed to be responsible for its therapeutic properties. Ensuring the use of high-quality leaves in herbal medicine preparation is crucial across all medicinal practices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!