Shear-induced phase transition in the aqueous solution of an imidazolium-based ionic liquid.

J Chem Phys

Department of Physics, School of Natural Sciences, Shiv Nadar University, NH 91, Tehsil Dadri, G.B. Nagar, Uttar Pradesh 201314, India.

Published: March 2023

An ionic liquid (IL) is a salt in the liquid state that consists of a cation and an anion, one of which possesses an organic component. Because of their non-volatile property, these solvents have a high recovery rate, and, hence, they are considered as environment-friendly green solvents. It is necessary to study the detailed physicochemical properties of these liquids for designing and processing techniques and find suitable operating conditions for IL-based systems. In the present work, the flow behavior of aqueous solutions of an imidazolium-based IL, 1-methyl-3-octylimidazolium chloride, is investigated, where the dynamic viscosity measurements indicate non-Newtonian shear thickening behavior in the solutions. Polarizing optical microscopy shows that the pristine samples are isotropic and transform into anisotropic after shear. These shear thickened liquid crystalline samples change into an isotropic phase upon heating, which is quantified by the differential scanning calorimetry. The small angle x-ray scattering study revealed that the pristine isotropic cubic phase of spherical micelles distort into non-spherical micelles. This has provided the detailed structural evolution of mesoscopic aggregates of the IL in an aqueous solution and the corresponding viscoelastic property of the solution.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0138078DOI Listing

Publication Analysis

Top Keywords

aqueous solution
8
ionic liquid
8
shear-induced phase
4
phase transition
4
transition aqueous
4
solution imidazolium-based
4
imidazolium-based ionic
4
liquid
4
liquid ionic
4
liquid salt
4

Similar Publications

Enhancing Biodegradation of Insoluble High Molecular Weight Polycyclic Aromatic Hydrocarbons in Macroemulsion (ME) Bioreactors with a Liquid-Liquid Interface.

ACS Appl Mater Interfaces

January 2025

College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China.

Due to the low bioavailability and insolubility of high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) in aqueous solutions, their degradation efficiency is significantly limited in wastewater treatment and environmental remediation. To address this challenge, we designed oil-in-water (O/W) macroemulsion (ME) bioreactors with mixed surfactants (Tween-80 and Triton X-100), -butanol, corn oil, and () to enhance the degradation efficiency of pyrene. Owing to the higher solubility of pyrene in MEs, it could be easily adsorbed onto hydrophobic groups on the cell surface.

View Article and Find Full Text PDF

There is limited research on the influence of environmental variables on the interactions of biodegradable microplastics with chromium. This study reports the results of adsorption experiments with Cr and poly(lactic acid) (PLA) in synthetic aqueous solutions. It addresses the influence of the initial oxidation state, Cr(III) or Cr(VI), the effects of UV irradiation and the presence of organic matter.

View Article and Find Full Text PDF

Ampicillin (AMP) ranks third among the top ten most frequently sold antibiotic combinations globally, raising concerns due to its extensive use. Improper disposal practices in agriculture, aquaculture, and healthcare have led to environmental contamination of water sources with elevated AMP levels. Current methods for detecting such contamination are costly, require sophisticated equipment, and depend on skilled personnel and unstable natural receptors.

View Article and Find Full Text PDF

CO-driven ion exchange for ammonium recovery from source-separated urine.

Water Res

January 2025

Georgia Tech Shenzhen Institute (GTSI), Tianjin University, Shenzhen 518067, China. Electronic address:

Nitrogen recovery from urine and CO utilization are both vital for achieving a circular economy and mitigating climate change. Divided engineering solutions have been proposed to address either problem, but there is still a lack of integrated technologies to simultaneously tackle the two tasks. We demonstrated CO-driven ion exchange for nitrogen recovery (CIXNR) from urine and evaluated the process in Malawi.

View Article and Find Full Text PDF

Nanozyme-based colorimetric sensors are promising approaches for environmental monitoring, food safety, and medical diagnostics. However, developing novel nanozymes that exhibit high catalytic activity, good dispersion in aqueous solution, high sensitivity, selectivity, and stability is challenging. In this study, for the first time, single-atom iridium-doped carbon dot nanozymes (SA Ir-CDs) are synthesized via a simple in situ pyrolysis process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!