Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The interest in sleep as a potential clinical biomarker is growing, but the standard method of sleep assessment, polysomnography, is expensive, time consuming, and requires a lot of expert assistance for both set-up and interpretation. To make sleep analysis more available both in research and in the clinic, there is a need for a reliable wearable device for sleep staging. In this case study, we test ear-electroencephalography. A wearable, where electrodes are placed in the outer ear, as a platform for longitudinal at-home recording of sleep. We explore the usability of the ear-electroencephalography in a shift work case with alternating sleep conditions. We find the ear-electroencephalography platform to be reliable both in terms of showing substantial agreement to polysomnography after long-time use (with an overall agreement, using Cohen's kappa, of 0.72) and by being unobtrusive enough to wear during night shift conditions. We find that fractions of non-rapid eye movement sleep and transition probability between sleep stages show great potential as sleep metrics when exploring quantitative differences in sleep architecture between shifting sleep conditions. This study shows that the ear-electroencephalography platform holds great potential as a reliable wearable for quantifying sleep "in the wild", pushing this technology further towards clinical adaptation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jsr.13853 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!