Objective: Pancreatic ductal adenocarcinoma (PDAC) displays a remarkable propensity towards therapy resistance. However, molecular epigenetic and transcriptional mechanisms enabling this are poorly understood. In this study, we aimed to identify novel mechanistic approaches to overcome or prevent resistance in PDAC.

Design: We used in vitro and in vivo models of resistant PDAC and integrated epigenomic, transcriptomic, nascent RNA and chromatin topology data. We identified a JunD-driven subgroup of enhancers, called interactive hubs (iHUBs), which mediate transcriptional reprogramming and chemoresistance in PDAC.

Results: iHUBs display characteristics typical for active enhancers (H3K27ac enrichment) in both therapy sensitive and resistant states but exhibit increased interactions and production of enhancer RNA (eRNA) in the resistant state. Notably, deletion of individual iHUBs was sufficient to decrease transcription of target genes and sensitise resistant cells to chemotherapy. Overlapping motif analysis and transcriptional profiling identified the activator protein 1 (AP1) transcription factor JunD as a master transcription factor of these enhancers. JunD depletion decreased iHUB interaction frequency and transcription of target genes. Moreover, targeting either eRNA production or signaling pathways upstream of iHUB activation using clinically tested small molecule inhibitors decreased eRNA production and interaction frequency, and restored chemotherapy responsiveness in vitro and in vivo. Representative iHUB target genes were found to be more expressed in patients with poor response to chemotherapy compared with responsive patients.

Conclusion: Our findings identify an important role for a subgroup of highly connected enhancers (iHUBs) in regulating chemotherapy response and demonstrate targetability in sensitisation to chemotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402638PMC
http://dx.doi.org/10.1136/gutjnl-2022-328154DOI Listing

Publication Analysis

Top Keywords

target genes
12
hubs ihubs
8
ihubs mediate
8
mediate transcriptional
8
transcriptional reprogramming
8
vitro vivo
8
transcription target
8
transcription factor
8
interaction frequency
8
erna production
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!