Disgusting fishy odor could break out inside oligotrophic drinking waterbody in winter with low temperature. Nevertheless, fishy odor-producing algae and corresponding fishy odorants were not very clear, odor contribution of fishy odorant and odor-producing algae to overall odor profile were also not well understood. In this study, the fishy odorants, produced by four algae separated from Yanlong Lake, were identified simultaneously. Odor contribution of identified odorant, separated algae to overall fishy odor profile were both evaluated. The results indicated Yanlong Lake was mainly associated with fishy odor (flavor profile analysis (FPA) intensity: 6), eight, five, five and six fishy odorants were identified and determined in Cryptomonas ovate, Dinobryon sp., Synura uvella, Ochromonas sp., respectively, which were separated and cultured from water source. Totally sixteen odorants with concentration range of 90-880 ng/L, including hexanal, heptanal, 2,4-heptadienal, 1-octen-3-one, 1-octen-3-ol, octanal, 2-octenal, 2,4-octadienal, nonanal, 2-nonenal, 2,6-nonadienal, decanal, 2-decenal, 2,4-decadienal, undecanal, 2-tetradecanone, were verified in separated algae and associated with fishy odor. Although more odorants' odor activity value (OAV) were lower than one, approximately 89%, 91%, 87%, 90% of fishy odor intensities could be explained by reconstituting identified odorants for Cryptomonas ovate, Dinobryon sp., Synura uvella, Ochromonas sp., respectively, suggesting synergistic effect could exist among identified odorants. By calculating and evaluating total odorant production, total odorant OAV and cell odorant yield of separated algae, odor contribution rank to overall fishy odor should be Cryptomonas ovate (28.19%), Dinobryon sp. (27.05%), Synura uvella (24.27%), Ochromonas sp. (20.49%). This is the first study for identifying fishy odorants from four actually separated odor-producing algae simultaneously, this is also for the first time evaluating and explaining odor contribution of identified odorant, separated algae to overall odor profile comprehensively, this study will supply more understanding for controlling and managing fishy odor in drinking water treatment plant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.138328 | DOI Listing |
, a special economic aquaculture species in China, is valued highly for its medicinal and nutritional benefits. However, the muscle of farmed exhibits a strong off-flavor, resulting in poor flavor quality. To enhance the flavor quality of the meat, this study examined the volatile compounds in muscle by establishing identification methods for these volatile odor compounds and comparing the differences between the two aquaculture modes.
View Article and Find Full Text PDFBMC Womens Health
January 2025
Department of Obstetrics and Gynecology, University Clinic of Bern, Friedbuehlstrasse 19, Bern, 3010, Switzerland.
Background: Bacterial vaginosis (BV) is a prevalent vaginal condition among reproductive-age women, characterized by off-white, thin vaginal discharge with a fishy odor. It increases susceptibility to sexually transmitted diseases (STDs) and pelvic inflammatory disease (PID). BV involves a shift in vaginal microbiota, with reduced lactobacilli and increased anaerobic bacteria.
View Article and Find Full Text PDFFood Sci Nutr
December 2024
SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology Dalian Polytechnic University Dalian China.
This study investigated the effect of different processing methods (boiling, oil boiling, and stir frying) on the flavor of hoki steak soups. The quality of different fillet broths was explored by pH, Thiobarbituric acid reactive substances (TBARS), and color. E-nose, E-tongue, and gas chromatography-ion mobility spectrometry (GC-IMS) combined with free amino acids (FAAs) were used to analyze the flavor of hoki steak soups.
View Article and Find Full Text PDFFoods
November 2024
Jiangxi Deshang Technology Group Co., Ltd., Zhangshu 331208, China.
Commercial DHA-rich algal oil has some issues, such as an unpleasant odor and susceptibility to oxidation. The main fishy odor compounds in commercial DHA-rich algal oil powder and DHA-rich algal oil microcapsules are hexanal and (E, E)-2,4-heptadienal. To address this issue, a microencapsulation process was designed for DHA-rich algal oil using infant rice powder (IRP), maltodextrin (MD), and whey protein concentrate (WPC) as wall materials, with sodium starch octenyl succinate (SSOS) and monoacylglycerol (MAC) as emulsifiers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!