Coaggregation plays an important role in the development of multispecies biofilms in different environments, often serving as an active bridge between biofilm members and other organisms that, in their absence, would not integrate the sessile structure. The ability of bacteria to coaggregate has been reported for a limited number of species and strains. In this study, 38 bacterial strains isolated from drinking water (DW) were investigated for their ability to coaggregate, in a total of 115 pairs of combinations. Among these isolates, only Delftia acidovorans (strain 005P) showed coaggregating ability. Coaggregation inhibition studies have shown that the interactions mediating D. acidovorans 005P coaggregation were both polysaccharide-protein and protein-protein, depending on the interacting partner bacteria. Dual-species biofilms of D. acidovorans 005P and other DW bacteria were developed to understand the role of coaggregation on biofilm formation. Biofilm formation by Citrobacter freundii and Pseudomonas putida strains highly benefited from the presence of D. acidovorans 005P, apparently due to the production of extracellular molecules/public goods favouring microbial cooperation. This was the first time that the coaggregation capacity of D. acidovorans was demonstrated, highlighting its role in providing a metabolic opportunity for partner bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.162646 | DOI Listing |
Mucosal Immunol
January 2025
Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, United States; Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, United States; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School, New York, NY 10065, United States. Electronic address:
Our immune system and gut microbiota are intricately coupled from birth, both going through maturation during early life and senescence during aging almost in a synchronized fashion. The symbiotic relationship between the human host and microbiota is critically dependent on a healthy immune system to keep our microbiota in check; while the microbiota provides essential functions to promote the development and fitness of our immune system. The partnership between our immune system and microbiota is particularly important during early life, in which microbial ligands and metabolites shape the development of the immune cells and immune tolerance; during aging, having sufficient beneficial gut bacteria is critical for the maintenance of intact mucosal barriers, immune metabolic fitness, and strong immunity against pathogens.
View Article and Find Full Text PDFEBioMedicine
January 2025
Institute of Immunology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany; German Centre for Infection Research, Partner Site Hannover-Braunschweig, Hannover, Germany. Electronic address:
Background: Aging increases disease susceptibility and reduces vaccine responsiveness, highlighting the need to better understand the aging immune system and its clinical associations. Studying the human immune system, however, remains challenging due to its complexity and significant inter-individual variability.
Methods: We conducted an immune profiling study of 550 elderly participants (≥60 years) and 100 young controls (20-40 years) from the RESIST Senior Individuals (SI) cohort.
Viruses
January 2025
Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
The betacoronavirus genus contains five of the seven human coronaviruses, making it a particularly critical area of research to prepare for future viral emergence. We utilized three human betacoronaviruses, one from each subgenus-HCoV-OC43 (embecovirus), SARS-CoV-2 (sarbecovirus), and MERS-CoV (merbecovirus)-, to study betacoronavirus interactions with the PKR-like ER kinase (PERK) pathway of the integrated stress response (ISR)/unfolded protein response (UPR). The PERK pathway becomes activated by an abundance of unfolded proteins within the endoplasmic reticulum (ER), leading to phosphorylation of eIF2α and translational attenuation.
View Article and Find Full Text PDFViruses
December 2024
Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
Background: Marek's disease (MD) is a pathology affecting chickens caused by Marek's disease virus (MDV), an acute transforming alphaherpesvirus of the genus . MD is characterized by paralysis, immune suppression, and the rapid formation of T-cell (primarily CD4+) lymphomas. Over the last 50 years, losses due to MDV infection have been controlled worldwide through vaccination; however, these live-attenuated vaccines are non-sterilizing and potentially contributed to the virulence evolution of MDV field strains.
View Article and Find Full Text PDFViruses
December 2024
World Health Organization (WHO) Country Office, Kinshasa 01206, Democratic Republic of the Congo.
The prevalence of hepatitis B virus infection remains high in the Democratic Republic of Congo (DRC), constituting a public health problem in view of the fatal complications it causes, notably cirrhosis and hepatocellular carcinoma. The aim of this study was to provide an overview of the situation of viral hepatitis B in the DRC and in particular its implications for public health. A systematic review was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) group guidelines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!