A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The FDX1 methylation regulatory mechanism in the malignant phenotype of glioma. | LitMetric

The FDX1 methylation regulatory mechanism in the malignant phenotype of glioma.

Genomics

Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital North, Suzhou, China. Electronic address:

Published: March 2023

To explore FDX1 methylation as a regulatory mechanism in the malignant phenotype of glioma, we screened for pathways involved through bioinformatic analysis, then proceeded with RIP and cell models to verify the regulation of RNAs and mitophagy. We chose Clone and Transwell assays to evaluate the malignant phenotype of glioma cells. MMP was detected by flow cytometry and mitochondrial morphology was observed by TEM. We also constructed animal models to study the sensitivity of glioma cells to cuproptosis. We successfully identified the signalling pathway: our cell model showed that C-MYC could upregulate FDX1 through YTHDF1 and inhibit mitophagy in glioma cells. Functional experiments revealed C-MYC could also enhance glioma cell proliferation and invasion via YTHDF1 and FDX1. In vivo experiments showed glioma cells were highly sensitive to cuproptosis. We concluded that C-MYC could upregulate FDX1 by m6A methylation, thus promoting the malignant phenotype in glioma cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygeno.2023.110601DOI Listing

Publication Analysis

Top Keywords

glioma cells
16
malignant phenotype
12
phenotype glioma
12
fdx1 methylation
8
methylation regulatory
8
regulatory mechanism
8
mechanism malignant
8
glioma
6
cells
5
fdx1
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!