Simultaneous nitrogen removal via heterotrophic nitrification and aerobic denitrification (HN-AD) has received widespread attention in biological treatment of wastewater. This study reported a novel Lysinibacillus fusiformis B301 strain, which effectively removed nitrogenous pollutants via HN-AD in one aerobic reactor with no nitrite accumulated. It exhibited the optimal nitrogen removal efficiency under 30°C, citrate as the carbon source and C/N ratio of 15. The maximum nitrogen removal rates were up to 2.11 mgNH -N/(L·h), 1.62 mgNO -N/(L·h), and 1.41 mgNO -N/(L·h), respectively, when ammonium, nitrate, and nitrite were employed as the only nitrogen source under aerobic conditions. Ammonium nitrogen was preferentially consumed via HN-AD in the coexistence of three nitrogen species, and the removal efficiencies of total nitrogen were up to 94.26%. Nitrogen balance analysis suggested that 83.25% of ammonium was converted to gaseous nitrogen. The HD-AD pathway catalyzed by L. fusiformis B301 followed , supported by the results of key denitrifying enzymatic activities. PRACTITIONER POINTS: The novel Lysinibacillus fusiformis B301 exhibited the outstanding HN-AD ability. The novel Lysinibacillus fusiformis B301 simultaneously removed multiple nitrogen species. No nitrite accumulated during the HN-AD process. Five key denitrifying enzymes were involved in the HN-AD process. Ammonium nitrogen (83.25%) was converted to gaseous nitrogen by the novel strain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/wer.10850 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!