Recycling air pollution-controlled residues (APCR) generated from sewage sludge incinerators can be used for waste management, but the leaching of potentially toxic heavy metals from APCR poses environmental and human health issues. The present paper describes a procedure using APCR to produce alkali-activated materials and thereby realize their disposal. The effect of APCR on the compressive strength and drying shrinkage of the alkali-activated slag/glass powder was investigated. The pore structure characteristics were analyzed for clarifying its relationship with drying shrinkage. The results indicated that the drying shrinkage of the alkali-activated material was related to the mesopore volume. The drying shrinkage was slightly increased after the incorporation of the 10 % APCR, which was likely attributed to the high volume of mesopores compared to the 20 % APCR that lowered the drying shrinkage and compressive strength. This decrease in drying shrinkage was due to the recrystallization of sodium sulfate in the pore solution that can act as expansive agents and aggregates. The growth stress of the crystalline sodium sulfate within the matrix can offset the tension stress caused by the water loss. In addition, leaching studies using the SW-846 Method 1311 showed that recycling APCR into the alkali-activated system did not present a toxicity leaching risk or release unacceptable concentrations of heavy metals. The incorporation of waste APCR and waste glass can make AAMs a very promising and safe environmental technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2023.03.003 | DOI Listing |
Materials (Basel)
January 2025
State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin 300350, China.
In this paper, the early drying shrinkage coefficients of different hydraulic cement mortars are calibrated through laboratory experiments for moderate-heat Portland cement (MHPC) and low-heat Portland cement (LHPC). By developing an improved mesoscale modeling approach, a 3D highly detailed simulation of concrete was generated, which incorporates the phases of mortar, aggregates, and interfacial transition zone (ITZ). The simulation result is in good agreement with the concrete early drying shrinkage experiment, exhibiting an error of less than 4.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, Studentská 2, 461 17, Liberec 1, Czech Republic.
Advances in the textile industry have led to a shift from using empirical experience to design fabrics to using computer-aided systems. Objective fabric properties related to appearance, feel, and comfort are predicted based on the physical models. The look and feel of fabrics are greatly influenced by their complex surface topology, which can be defined by two main properties: roughness and hairiness.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Textile Science & Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China. Electronic address:
Atmospheric pressure drying (APD) method holds great promise in the large-scale production of aerogels without specialized equipment and critical conditions. However, atmospheric-dried cellulose- based aerogels are challenged by the collapse of the pore walls induced by the capillary force that arises during solvent evaporation. This study prepared an atmospheric dried cellulose nanofiber (CNF) aerogel with a low shrinkage rate (17.
View Article and Find Full Text PDFJ Food Sci
January 2025
College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, China.
To enhance the drying quality of peony flowers, this study developed an integrated intelligent control and monitoring system. The system incorporates computer vision technology to enable real-time continuous monitoring and analysis of the total color change (ΔE) and shrinkage rate (SR) of the material. Additionally, by integrating drying time and temperature data, a hybrid neural network model combining convolutional neural networks, long short-term memory, and attention mechanisms (CNN-LSTM-Attention) was employed to accurately predict the moisture ratio (MR) of peony flowers.
View Article and Find Full Text PDFJ Food Sci
January 2025
Key Laboratory of Agro-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Agricultural Quality Standard and Testing Technology, Chinese Academy of Agricultural Sciences, Beijing, China.
This study applied program temperature-controlled drying (PTCD) to optimize the hot-air drying process for shiitake mushrooms, adjusting the drying temperature based on activity changes of γ-glutamyl transpeptidase (γ-GTase) and cysteine sulfoxide lyase (C-S lyase). Compared with constant temperature drying, PTCD (ST_75 and ST_150) significantly enhanced the umami and aroma profiles and sulfur compounds, increasing the levels of key flavor compounds such as glutamic acid and 5'-GMP. Moreover, PTCD improved rehydration capacity (515.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!