A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sustainable chromatographic purification of milbemectin: Application of high-speed countercurrent chromatography coupled with off-line atmospheric pressure solid analysis probe-high resolution mass spectrometry. | LitMetric

Sustainable chromatographic purification of milbemectin: Application of high-speed countercurrent chromatography coupled with off-line atmospheric pressure solid analysis probe-high resolution mass spectrometry.

J Chromatogr A

Laboratory of Clinical & Analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan. Electronic address:

Published: April 2023

Isolation of valuable chemicals is an important process in reagent manufacturing for the pharmaceutical and food science industries. This process is traditionally time-consuming, expensive, and consumes vast amounts of organic solvents. Considering green chemistry and sustainability concerns, we sought to develop a sustainable chromatographic purification methodology for obtaining antibiotics by focusing on the reduction of organic solvent waste generation. Milbemectin (mixture of milbemycin A3 and milbemycin A4) was successfully purified using high-speed countercurrent chromatography (HSCCC) and pure fractions (>98% purity, HPLC) could be identified using the organic solvent fee atmospheric pressure solid analysis probe mass spectrometry (ASAP-MS). The organic solvents required for HSCCC could be redistilled and recycled for continued HSCCC purification, thus reducing the consumption of organic solvent (n-hexane/ethyl acetate) by 80+%. Optimization of the two-phase solvent system (n-hexane/ethyl acetate/methanol/water, 9/1/7/3, v/v/v/v) for HSCCC was assisted computationally, thereby reducing solvent waste from an experimental determination. Our proposal application of HSCCC and offline ASAP-MS provides proof of concept for a sustainable, preparative scale, chromatographic purification methodology for obtaining antibiotics in high purity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2023.463901DOI Listing

Publication Analysis

Top Keywords

chromatographic purification
12
organic solvent
12
sustainable chromatographic
8
high-speed countercurrent
8
countercurrent chromatography
8
atmospheric pressure
8
pressure solid
8
solid analysis
8
mass spectrometry
8
organic solvents
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!