Carbon dots (CDs) have been extensively employed in biomolecule imaging. However, the imaging of biological enzymes with CDs has not been reported, which greatly limits their application in biological imaging. Herein, for the first time, a new type of fluorescent CDs is elaborately designed to realize the direct mapping of alkaline phosphatase (ALP) in cells. The obtained phosphorus and nitrogen co-doped CDs (P, N-CDs) generate specific structures including xanthene oxide and phosphate ester, thereby enabling P, N-CDs to be exclusively cleaved by ALP without auxiliary media. The fluorescence intensity of P, N-CDs can be specifically turned on in the presence of ALP, making them powerful probes for sensitive sensing of ALP activity with a detection limit of 1.27 U·L. Meanwhile, P, N-CDs possessing electron deficiency structure fulfill sensitive responding to polarity variations. The excellent photo-bleaching resistance and biocompatibility of the P, N-CDs are taken for directly mapping the intracellular endogenous ALP via turned-on fluorescence imaging, as well as real-time monitoring the polarity fluctuation in cells through ratiometric fluorescence imaging. The present work offers a new way to design and synthesize functional CDs for direct imaging of intracellular enzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.02.133 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!