The bacterial cellulose membrane (CM) is a promising biomaterial due to its easy applicability and moist environment. Moreover, nanoscale silver compounds (AgNO) are synthesized and incorporated into CMs to provide these biomaterials with antimicrobial activity for wound healing. This study aimed to evaluate the cell viability of CM incorporated with nanoscale silver compounds, determine the minimum inhibitory concentration (MIC) for Escherichia coli and Staphylococcus aureus, and its use on in vivo skin lesions. Wistar rats were divided according to treatment: untreated, CM (cellulose membrane), and AgCM (CM incorporated with silver nanoparticles). The euthanasia was performed on the 2nd, 7th, 14th, and 21st days to assess inflammation (myeloperoxidase-neutrophils, N-acetylglucosaminidase-macrophage, IL-1β, IL-10), oxidative stress (NO-nitric oxide, DCF-HO), oxidative damage (carbonyl: membrane's damage; sulfhydryl: membrane's integrity), antioxidants (superoxide dismutase; glutathione), angiogenesis, tissue formation (collagen, TGF-β1, smooth muscle α-actin, small decorin, and biglycan proteoglycans). The use of AgCM did not show toxicity, but antibacterial effect in vitro. Moreover, in vivo, AgCM provided balanced oxidative action, modulated the inflammatory profile due to the reduction of IL-1β level and increase in IL-10 level, in addition to increased angiogenesis and collagen formation. The results suggest the use of silver nanoparticles (AgCM) enhanced the CM properties by providing antibacterial properties, modulation the inflammatory phase, and consequently promotes the healing of skin lesions, which can be used clinically to treat injuries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2023.02.058DOI Listing

Publication Analysis

Top Keywords

cellulose membrane
12
silver nanoparticles
12
bacterial cellulose
8
incorporated silver
8
wound healing
8
nanoscale silver
8
silver compounds
8
skin lesions
8
silver
5
incorporated
4

Similar Publications

In yeast and mammals, the EXO70 subunit of the exocyst complex plays a key role in mediating the tethering of exocytic vesicles to the plasma membrane (PM). In plants, however, the role of EXO70 in regulating vesicle tethering during exocytosis remains unclear. In land plants, EXO70 has undergone significant evolutionary expansion, resulting in multiple EXO70 paralogues that may allow the exocyst to form various isoforms with specific functions.

View Article and Find Full Text PDF

17β-estradiol (E2) is an endocrine disruptor, and even trace concentrations (ng/L) of environmental estrogen can interfere with the endocrine system of organisms. Lignin holds promise in enhancing the microbial degradation E2. However, the mechanisms by which lignin facilitates this process remain unclear, which is crucial for understanding complex environmental biodegradation in nature.

View Article and Find Full Text PDF

Skin, as the primary interface with the external environment, is susceptible to damage, posing a formidable challenge for complete restoration in adult skin injuries. Wound healing remains a clinical challenge, necessitating advanced biomaterials to support cell proliferation, modulate inflammation, and combat infections. Among several options, hydrogel can be a capable contender for biological dressings.

View Article and Find Full Text PDF

Facile green treatment of mixed cellulose ester membranes by deep eutectic solvent to enhance dye removal and determination.

Int J Biol Macromol

December 2024

Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada. Electronic address:

Synthetic dye production and the consequent generation of dye-rich wastewater are major concerns of water quality in many countries. We developed a sustainable approach with deep eutectic solvent (DES) treatment to enhance the efficiency of mixed cellulose ester (MCE) membrane-based dye removal material. The DES composition and treatment conditions were optimized, and the treated membranes were comprehensively characterized.

View Article and Find Full Text PDF

High-Performance and Anti-Freezing Moisture-Electric Generator Combining Ion-Exchange Membrane and Ionic Hydrogel.

Small

December 2024

Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China.

Moisture-electric generators (MEGs), which convert moisture chemical potential energy into electrical power, are attracting increasing attention as clean energy harvesting and conversion technologies. However, existing devices suffer from inadequate moisture trapping, intermittent electric output, suboptimal performance at low relative humidity (RH), and limited ion separation efficiency. This study designs an ionic hydrogel MEG capable of continuously generating energy with enhanced selective ion transport and sustained ion-to-electron current conversion at low RH by integrating an ion-exchange membrane (IEM-MEG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!