A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep reinforcement learning-based propofol infusion control for anesthesia: A feasibility study with a 3000-subject dataset. | LitMetric

AI Article Synopsis

  • - The study introduces a deep reinforcement learning approach for controlling propofol infusion autonomously, aiming to enhance anesthesia management.
  • - It involves creating a simulation environment that adapts to different patient demographics and conditions, allowing for effective predictions on propofol levels necessary for stable anesthesia.
  • - Evaluations using data from 3,000 patients demonstrate that the system successfully stabilizes anesthesia by managing key indicators like bispectral index (BIS) and effect-site concentration, even amidst fluctuating patient conditions.

Article Abstract

In this work, we present a deep reinforcement learning-based approach as a baseline system for autonomous propofol infusion control. Specifically, design an environment for simulating the possible conditions of a target patient based on input demographic data and design our reinforcement learning model-based system so that it effectively makes predictions on the proper level of propofol infusion to maintain stable anesthesia even under dynamic conditions that can affect the decision-making process, such as the manual control of remifentanil by anesthesiologists and the varying patient conditions under anesthesia. Through an extensive set of evaluations using patient data from 3000 subjects, we show that the proposed method results in stabilization in the anesthesia state, by managing the bispectral index (BIS) and effect-site concentration for a patient showing varying conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2023.106739DOI Listing

Publication Analysis

Top Keywords

propofol infusion
12
deep reinforcement
8
reinforcement learning-based
8
infusion control
8
learning-based propofol
4
anesthesia
4
control anesthesia
4
anesthesia feasibility
4
feasibility study
4
study 3000-subject
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: