Osimertinib is a third-generation, irreversible, oral EGFR tyrosine kinase inhibitor (TKI) recommended as first-line treatment for patients with locally advanced/metastatic EGFR mutation-positive (EGFRm) non-small cell lung cancer (NSCLC). However, MET amplification/overexpression is a common acquired osimertinib resistance mechanism. Savolitinib is an oral, potent, and highly selective MET-TKI; preliminary data suggest that combining osimertinib with savolitinib may overcome MET-driven resistance. A patient-derived xenograft (PDX) mouse model with EGFRm, MET-amplified NSCLC was tested with a fixed osimertinib dose [10 mg/kg for exposures equivalent to (≈)80 mg], combined with doses of savolitinib (0-15 mg/kg, ≈0-600 mg once daily), both with 1-aminobenzotriazole (to better match clinical half-life). After 20 days of oral dosing, samples were taken at various time points to follow the time course of drug exposure in addition to phosphorylated MET and EGFR (pMET and pEGFR) change. Population pharmacokinetics, savolitinib concentration versus percentage inhibition from baseline in pMET, and the relationship between pMET and tumor growth inhibition (TGI) were also modeled. As single agents, savolitinib (15 mg/kg) showed significant antitumor activity, reaching ∼84% TGI, and osimertinib (10 mg/kg) showed no significant antitumor activity (34% TGI, P > 0.05 vs. vehicle). Upon combination, at a fixed dose of osimertinib, significant savolitinib dose-related antitumor activity was shown, ranging from 81% TGI (0.3 mg/kg) to 84% tumor regression (15 mg/kg). Pharmacokinetic-pharmacodynamic modeling showed that the maximum inhibition of both pEGFR and pMET increased with increasing savolitinib doses. Savolitinib demonstrated exposure-related combination antitumor activity when combined with osimertinib in the EGFRm MET-amplified NSCLC PDX model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10157363 | PMC |
http://dx.doi.org/10.1158/1535-7163.MCT-22-0193 | DOI Listing |
Discov Oncol
January 2025
Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, 150001, China.
Cancer vaccines are promising as an effective means of stimulating the immune system to clear tumors as well as to establish immune surveillance. In this paper, we discuss the main platforms and current status of cancer vaccines and propose a new cancer vaccine platform, the cytosolic vesicle vaccine. This vaccine has a unique structure that can integrate antigen and adjuvant carriers to improve the delivery efficiency and immune activation ability, which brings new ideas for cancer vaccine design.
View Article and Find Full Text PDFDiscov Nano
January 2025
Institute of Science, Department of Chemistry, Firat University, 23200, Elazığ, Turkey.
In this study, firstly chitin was reacted with chloracetyl chloride to synthesize the macroinitiator chitinchloroacetate (Ch.ClAc). Then, graft copolymers of methacrylamide (MAM), diacetone acrylamide (DAAM), N-(4-nitrophenyl)acrylamide (NPA), and 2-hydroxyethyl methacrylate (HEMA) monomers were synthesized by atom transfer radical polymerization (ATRP).
View Article and Find Full Text PDFJ Membr Biol
January 2025
Laboratório de Bioquímica Celular, Universidade Federal de São João del-Rei (UFSJ), Divinópolis, Brazil.
Cancer is a leading cause of death worldwide and its treatment is hampered by the lack of specificity and side effects of current drugs. Cardiotonic steroids (CTS) interact with Na/K-ATPase (NKA) and induce antineoplastic effects, but their narrow therapeutic window is key limiting factor. The synthesis of digitoxigenin derivatives with glycosidic unit modifications is a promising approach to develop more selective and effective antitumor agents.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Macau, Institute of Chinese Medical Sciences, Avenida da Universidade, N22, Taipa, CHINA.
Engineered immune cell therapy has proven to be a transformative cancer treatment despite the challenges of its prohibitive costs and manufacturing complexity. In this study, we propose a concise "lipid droplet fusion" strategy for engineering macrophages. Because of the integration of hydrophobic alkyl chains and π-conjugated structures, the mildly synthesized sp2C-conjugated covalent organic framework (COF) UM-101 induced lipid droplet fusion and metabolic reprogramming of macrophages, thus promoting their antitumor classical activation.
View Article and Find Full Text PDFPlatelets
December 2025
Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA.
Platelet-like particles (PLPs), derived from megakaryocytic cell lines MEG-01 and K-562, are widely used as a surrogate to study platelet formation and function. We demonstrate by RNA-Seq that PLPs are transcriptionally distinct from platelets. Expression of key genes in signaling pathways promoting platelet activation/aggregation, such as the PI3K/AKT, protein kinase A, phospholipase C, and α-adrenergic and GP6 receptor pathways, was missing or under-expressed in PLPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!