Ampicillin-controlled glucose metabolism manipulates the transition from tolerance to resistance in bacteria.

Sci Adv

State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China.

Published: March 2023

The mechanism(s) of how bacteria acquire tolerance and then resistance to antibiotics remains poorly understood. Here, we show that glucose abundance decreases progressively as ampicillin-sensitive strains acquire resistance to ampicillin. The mechanism involves that ampicillin initiates this event via targeting promoter and pyruvate dehydrogenase (PDH) to promote glucose transport and inhibit glycolysis, respectively. Thus, glucose fluxes into pentose phosphate pathway to generate reactive oxygen species (ROS) causing genetic mutations. Meanwhile, PDH activity is gradually restored due to the competitive binding of accumulated pyruvate and ampicillin, which lowers glucose level, and activates cyclic adenosine monophosphate (cAMP)/cAMP receptor protein (CRP) complex. cAMP/CRP negatively regulates glucose transport and ROS but enhances DNA repair, leading to ampicillin resistance. Glucose and Mn delay the acquisition, providing an effective approach to control the resistance. The same effect is also determined in the intracellular pathogen Thus, glucose metabolism represents a promising target to stop/delay the transition of tolerance to resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9995076PMC
http://dx.doi.org/10.1126/sciadv.ade8582DOI Listing

Publication Analysis

Top Keywords

tolerance resistance
12
glucose metabolism
8
transition tolerance
8
glucose transport
8
glucose
7
resistance
6
ampicillin-controlled glucose
4
metabolism manipulates
4
manipulates transition
4
resistance bacteria
4

Similar Publications

Background: Non-small cell lung cancer (NSCLC) is a fatal disease, and radioresistance is an important factor leading to treatment failure and disease progression. The objective of this research was to detect radioresistance-related genes (RRRGs) with prognostic value in NSCLC.

Methods: The weighted gene coexpression network analysis (WGCNA) and differentially expressed genes (DEGs) analysis were performed to identify RRRGs using expression profiles from TCGA and GEO databases.

View Article and Find Full Text PDF

: To assess the effects of a two-week course of intensive impairment-oriented arm rehabilitation for chronic stroke survivors on motor function. : An observational cohort study that enrolled chronic stroke survivors (≥6 months after stroke) with mild to severe arm paresis, who received a two-week course of impairment-oriented and technology-supported arm rehabilitation (1:1 participant-therapist setting), which was carried out daily (five days a week) for four hours. The outcome measures were as follows: the primary outcome was the arm motor function of the affected arm (mild paresis: BBT, NHPT; severe paresis: Fugl-Meyer arm motor score).

View Article and Find Full Text PDF

High sugar intake, particularly fructose, is implicated in obesity and metabolic complications. On the other hand, fructose from fruits and vegetables has undisputed benefits for metabolic health. This raises a paradoxical question-how the same fructose molecule can be associated with detrimental health effects in some studies and beneficial in others.

View Article and Find Full Text PDF

Fighting Fire with Fire: Impact of Sugary Diets on Metabolically Deranged Mice.

Nutrients

December 2024

Department of Neuroscience & Behavior, Barnard College, Columbia University, New York, NY 10027, USA.

There is controversy about the health risks of sugary diets. A recent study reported that chronic consumption of 11% sugar solutions improved glycemic control in lean mice. Based on this finding, we hypothesized that chronic consumption of the same 11% sugar solutions would also improve glycemic control in metabolically deranged mice.

View Article and Find Full Text PDF

This study evaluated the inhibitory efficacy of NJAU-01 (NJAU-01) on oxidation associated with malondialdehyde (MDA) and utilized the bacteria in a functional lactic acid beverage. The antioxidant capacity of the bacteria was measured in vitro, the production conditions (inoculum, fermentation time, and sugar addition) of the lactic acid beverage were optimized, and the effects of NJAU-01 on antioxidant, flavor profile, and storage stability of lactic acid beverages were investigated. The results revealed that NJAU-01 exhibited a high tolerance towards MDA at 40 mM, and that it also exhibited outstanding antioxidant capacity in vitro and antioxidant enzyme activity throughout its growth stage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!