Conditions related to cardiometabolic disease, including metabolic syndrome and type 2 diabetes, are common among men with Klinefelter syndrome (KS). The molecular mechanisms underlying this aberrant metabolism in KS are largely unknown, although there is an assumption that chronic testosterone deficiency plays a role. This cross-sectional study compared plasma metabolites in 31 pubertal adolescent males with KS to 32 controls of similar age (14 ± 2 years), pubertal stage, and body mass index z-score of 0.1 ± 1.2 and then between testosterone-treated (n = 16) and untreated males with KS. The plasma metabolome in males with KS was distinctly different from that in controls, with 22% of measured metabolites having a differential abundance and seven metabolites nearly completely separating KS from controls (area under the curve > 0.9, P < 0.0001). Multiple saturated free fatty acids were higher in KS, while mono- and polyunsaturated fatty acids were lower, and the top significantly enriched pathway was mitochondrial β-oxidation of long-chain saturated fatty acids (enrichment ratio 16, P < 0.0001). In contrast, there were no observed differences in metabolite concentrations between testosterone-treated and untreated individuals with KS. In conclusion, the plasma metabolome profile in adolescent males with KS is distinctly different from that in males without KS independent of age, obesity, pubertal development, or testosterone treatment status and is suggestive of differences in mitochondrial β-oxidation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10160545PMC
http://dx.doi.org/10.1530/EC-22-0523DOI Listing

Publication Analysis

Top Keywords

fatty acids
12
klinefelter syndrome
8
adolescent males
8
testosterone-treated untreated
8
plasma metabolome
8
males distinctly
8
mitochondrial β-oxidation
8
males
5
unique plasma
4
plasma metabolite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!