Therapeutic repurposing emerged as an alternative to the traditional drug discovery and development model (DDD) of new molecular entities (NMEs). It was anticipated that by being faster, safer, and cheaper, the development would result in lower-cost drugs. As defined in this work, a repurposed cancer drug is one approved by a health regulatory authority against a non-cancer indication that then gains new approval for cancer. With this definition, only three drugs are repurposed for cancer: Bacillus Calmette-Guerin (BCG) vaccine (superficial bladder cancer, thalidomide [multiple myeloma], and propranolol [infantile hemangioma]). Each of these has a different history regarding price and affordability, and it is not yet possible to generalize the impact of drug repurposing on the final price to the patient. However, the development, including the price, does not differ significantly from an NME. For the end consumer, the product's price is unrelated to whether it followed the classical development or repurposing. Economic constraints for clinical development, and drug prescription biases for repurposing drugs, are barriers yet to be overcome. The affordability of cancer drugs is a complex issue that varies from country to country. Many alternatives for having affordable drugs have been put forward, however these measures have thus far failed and are, at best, palliative. There are no immediate solutions to the problem of access to cancer drugs. It is necessary to critically analyze the impact of the current drug development model and be creative in implementing new models that genuinely benefit society.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097740PMC
http://dx.doi.org/10.1007/s40261-023-01251-0DOI Listing

Publication Analysis

Top Keywords

therapeutic repurposing
8
development model
8
repurposed cancer
8
cancer drugs
8
cancer
7
drugs
7
development
6
drug
5
repurposing cancer
4
cancer meet
4

Similar Publications

Camel mastitis especially caused by Staphylococcus aureus (S. aureus), is a major risk to animal health and milk production. The current investigation evaluated the antibiotic susceptibility and virulence factors of S.

View Article and Find Full Text PDF

Therapeutic role of aripiprazole in cartilage defects explored through a drug repurposing approach.

Sci Rep

December 2024

Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.

Articular cartilage has a limited regenerative capacity, resulting in poor spontaneous healing of damaged tissue. Despite various scientific efforts to enhance cartilage repair, no single method has yielded satisfactory results. With rising drug development costs, drug repositioning has emerged as a viable alternative.

View Article and Find Full Text PDF

Combination of paclitaxel with rosiglitazone induces synergistic cytotoxic effects in ovarian cancer cells.

Sci Rep

December 2024

Department of Zoology, Biomedical Technology, Human Genetics, and WBC, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.

Ovarian cancer is known to be a challenging disease to detect at an early stage and is a major cause of death among women. The current treatment for ovarian cancer typically involves a combination of surgery and the use of drugs such as platinum-based cytotoxic agents, anti-angiogenic drugs, etc. However, current treatment methods are not always effective in preventing the recurrence of ovarian cancer.

View Article and Find Full Text PDF

The increasing utilization of deep learning models in drug repositioning has proven to be highly efficient and effective. In this study, we employed an integrated deep-learning model followed by traditional drug screening approach to screen a library of FDA-approved drugs, aiming to identify novel inhibitors targeting the TNF-α converting enzyme (TACE). TACE, also known as ADAM17, plays a crucial role in the inflammatory response by converting pro-TNF-α to its active soluble form and cleaving other inflammatory mediators, making it a promising target for therapeutic intervention in diseases such as rheumatoid arthritis.

View Article and Find Full Text PDF

Genetic Association of Juvenile Idiopathic Arthritis With Adult Rheumatic Disease.

JAMA Netw Open

December 2024

Department of Cell Biology, The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.

Importance: Patients with juvenile idiopathic arthritis (JIA) may develop adult rheumatic diseases later in life, and prolonged or recurrent disease activity is often associated with substantial disability; therefore, it is important to identify patients with JIA at high risk of developing adult rheumatic diseases and provide specialized attention and preventive care to them.

Objective: To elucidate the full extent of the genetic association of JIA with adult rheumatic diseases, to improve treatment strategies and patient outcomes for patients at high risk of developing long-term rheumatic diseases.

Design, Setting, And Participants: In this genetic association study of 4 disease genome-wide association study (GWAS) cohorts from 2013 to 2024 (JIA, rheumatoid arthritis [RA], systemic lupus erythematosus [SLE], and systemic sclerosis [SSc]), patients in the JIA cohort were recruited from the US, Australia, and Norway (with a UK cohort included in the meta-analyzed cohort), while patients in the other 3 cohorts were recruited from US and Western European countries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!