The increase in the production and application of engineered nanomaterials, including nanoparticles (NPs), leads to their discharge into the environment, where they can interact with coexisting antibiotics from wastewater, causing a complicated joint effect on organisms that need to be studied. Herein, a typical engineered nanomaterial, silica-magnetite NPs modified with tetraethoxysilane and 3-aminopropyltriethoxysilane (MTA-NPs, 1-2 g/L), and common antibiotic ciprofloxacin (CIP, 0-5 mg/L) were selected as the analytes. Their joint toxicity to a model of ciliates infusoria, Paramecium caudatum was specifically investigated. The impact of CIP, MTA-NPs, and humic acids (HA) was tracked for 24 h, individually and collectively, on the mortality of infusoria. The addition of MTA-NPs and HA at the studied concentrations leads to 40% mortality of organisms. The combined presence of the MTA-NPs at a concentration of 1.5-2 mg/L and HA at a concentration of 20-45 mg/L has a multiplier effect and allows to reduce the mortality rate of ciliates > 30% due to the enhanced removal of CIP. That finding demonstrated a clearly detoxifying role of dissolved organic matter (here, humic substances) in case of complex water pollution where pharmaceuticals and nanomaterials are presented.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-26233-9DOI Listing

Publication Analysis

Top Keywords

antibiotic ciprofloxacin
8
silica-magnetite nanoparticles
4
nanoparticles ecotoxicity
4
ecotoxicity antibiotic
4
ciprofloxacin increase
4
increase production
4
production application
4
application engineered
4
engineered nanomaterials
4
nanomaterials including
4

Similar Publications

Background: Previous microbiological investigations have demonstrated a significant correlation between complex (CKC) infection and mastitis. Recent studies have confirmed the existence of the CKC, with () identified as the primary infectious agent. Examining the incidence of CKC in cases of severe non-lactational mastitis, alongside the clinical characteristics of infected patients, as well as evaluating the drug sensitivity testing protocols for CKC, can provide a more robust foundation for the diagnosis and treatment of CKC infections.

View Article and Find Full Text PDF

The modern world is facing the issue of emerging pollutants for its sustainable development. We report a detailed study on the abatement of ciprofloxacin (CIP) by BeO nanocage. Five different geometries of BeO nanocage with CIP i.

View Article and Find Full Text PDF

Introduction: Medicine quality can be influenced by environmental factors. In low- and middle-income countries (LMICs) with tropical climates, storage facilities of medicines in healthcare settings and homes may be suboptimal. However, knowledge of the effects of temperature and other climatic and environmental factors on the quality of medicines is limited.

View Article and Find Full Text PDF

AO-UBERRemoval of mixed antibiotics from saline wastewater under intermittent electrical stimulation and alterations of microbial communities and resistance genes.

Environ Res

January 2025

Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, P.R. China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, P.R. China.

Antibiotics and antibiotic resistance genes (ARGs) are severe refractory pollutants in water. However, the effect of an intermittent electrical stimulation on the removal of antibiotics and ARGs from saline wastewater remains unclear. An anaerobic-aerobic-coupled upflow bioelectrochemical reactors (AO-UBERs) was used to treat tetracycline (TC) and quinolone (QN) in saline wastewater.

View Article and Find Full Text PDF

Background: Pharmaceuticals are expected to improve human and animal health, but improper management and regulation have led to adverse effects such as reproductive disorders, antibiotic resistance, and biodiversity loss in ecosystems. Their presence in the environment poses significant risks, including a reduction in biodiversity, reproductive issues, and the development of antimicrobial resistance. This review aims to examine the occurrence and sources of pharmaceuticals in the environment and their ecotoxicological and regulatory aspects, with a focus on Ethiopia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!