A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Replacing secretin-enhanced MRCP with MRI radiomics model based on a fully automated pancreas segmentation for assessing pancreatic exocrine function in chronic pancreatitis. | LitMetric

Objectives: To develop and validate a radiomics nomogram based on a fully automated pancreas segmentation to assess pancreatic exocrine function. Furthermore, we aimed to compare the performance of the radiomics nomogram with the pancreatic flow output rate (PFR) and conclude on the replacement of secretin-enhanced magnetic resonance cholangiopancreatography (S-MRCP) by the radiomics nomogram for pancreatic exocrine function assessment.

Methods: All participants underwent S-MRCP between April 2011 and December 2014 in this retrospective study. PFR was quantified using S-MRCP. Participants were divided into normal and pancreatic exocrine insufficiency (PEI) groups using the cut-off of 200 µg/L of fecal elastase-1. Two prediction models were developed including the clinical and non-enhanced T1-weighted imaging radiomics model. A multivariate logistic regression analysis was conducted to develop the prediction models. The models' performances were determined based on their discrimination, calibration, and clinical utility.

Results: A total of 159 participants (mean age [Formula: see text] standard deviation, 45 years [Formula: see text] 14;119 men) included 85 normal and 74 PEI. All the participants were divided into a training set comprising 119 consecutive patients and an independent validation set comprising 40 consecutive patients. The radiomics score was an independent risk factor for PEI (odds ratio = 11.69; p < 0.001). In the validation set, the radiomics nomogram exhibited the highest performance (AUC, 0.92) in PEI prediction, whereas the clinical nomogram and PFR had AUCs of 0.79 and 0.78, respectively.

Conclusion: The radiomics nomogram accurately predicted pancreatic exocrine function and outperformed pancreatic flow output rate on S-MRCP in patients with chronic pancreatitis.

Key Points: • The clinical nomogram exhibited moderate performance in diagnosing pancreatic exocrine insufficiency. • The radiomics score was an independent risk factor for pancreatic exocrine insufficiency, and every point rise in the rad-score was associated with an 11.69-fold increase in pancreatic exocrine insufficiency risk. • The radiomics nomogram accurately predicted pancreatic exocrine function and outperformed the clinical model and pancreatic flow output rate quantified by secretin-enhanced magnetic resonance cholangiopancreatography on MRI in patients with chronic pancreatitis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00330-023-09448-9DOI Listing

Publication Analysis

Top Keywords

pancreatic exocrine
16
exocrine function
12
radiomics nomogram
12
radiomics model
8
based fully
8
fully automated
8
automated pancreas
8
pancreas segmentation
8
nomogram pancreatic
8
participants divided
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!