A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A miniaturized genotoxicity evaluation system for fast biomaterial-related risk assessment. | LitMetric

Implants and prostheses are widely used to either repair damaged tissues or treat different diseases. Before an implant reaches the market, multiple preclinical and clinical tests must be performed. Along with cytotoxicity or hemocompatibility preclinical tests, genotoxicity is an essential feature to investigate. Indeed, the materials used for implantation should be non-genotoxic, . they should not promote mutations that can potentially lead to tumour formation. However, given the complexity level of genotoxicity tests, such tests are not readily available to biomaterials researchers, which is the reason why this aspect is severely underreported in the literature. To solve this problem, we developed a simplified genotoxicity test that can be further adapted by standard biomaterials laboratories. We started by simplifying the classic Ames test in Petri dishes, after which we developed a miniaturized test in a microfluidic chip, which takes only 24 hours, requiring significantly less material and space. An automatization option with a customized testing chamber architecture and microfluidics-based control system has been designed as well. This optimized microfluidic chip system can significantly improve the availability of genotoxicity tests for biomaterials developers, with the additional benefit of more in-depth observation and quantitative comparison due to the availability of processable image components.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2ay01873jDOI Listing

Publication Analysis

Top Keywords

genotoxicity tests
8
tests biomaterials
8
microfluidic chip
8
tests
5
miniaturized genotoxicity
4
genotoxicity evaluation
4
evaluation system
4
system fast
4
fast biomaterial-related
4
biomaterial-related risk
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!