Structural defects at the surface and within the bulk of perovskite films hinder efficient energy conversion in solar cells due to the loss of charge carriers through non-radiative recombination. Post-passivation approaches have been proposed in an attempt to eliminate surface defects, with bulk defects being rarely studied. Moreover, it is of interest to investigate the difference in the perovskite crystal growth with and without simultaneous defect passivation. Here, we study a new crystal growth strategy to realize high-quality triple-cation perovskite crystals utilizing microwave irradiation combined with a continuous supply of defect passivators from a reservoir solution of trioctyl--phosphine oxide (TOPO). The proposed method facilitates the growth of perovskite crystals with TOPO ligand coordination in the whole film region. Consequently, the processed perovskite film demonstrates distinctive features of significantly suppressed non-radiative recombination, substantial defect reduction and morphological changes compared to the perovskites processed by conventional thermal annealing. The power conversion efficiency is enhanced owing to the improved open-circuit voltage () and short-circuit current (). The results of this study are expected to assist in the development of diverse approaches for the control of perovskite crystal growth with defect passivation toward high efficiency in solar cells.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2nr07090aDOI Listing

Publication Analysis

Top Keywords

crystal growth
16
solar cells
12
non-radiative recombination
8
perovskite crystal
8
defect passivation
8
perovskite crystals
8
perovskite
6
growth
5
microwave-facilitated crystal
4
growth defect-passivated
4

Similar Publications

Carboxylated cellulose nanocrystals mediated flower-like zinc oxide for antimicrobial without activation of light.

J Colloid Interface Sci

April 2025

State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:

Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.

View Article and Find Full Text PDF

The application of spermatogonial stem cells (SSC) will be more effective and feasible following the successful cryopreservation and transfer of SSCs in livestock. Like other cells, SSCs are also sensitive to cryoinjury; hence composition of the cryomedia and freezing protocols need to be optimized. The present study aims to optimising the best freezing rates by minimising the ice crystallization and dehydration effect in order to maximize the post-thaw SSCs survivability and stemness characteristics.

View Article and Find Full Text PDF

Lattice coherency engineering trigger rapid charge transport at the heterointerface of Te/InO@MXene photocatalysts for boosting photocatalytic hydrogen evolution.

J Colloid Interface Sci

January 2025

College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China; Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar 161006, PR China. Electronic address:

The establishment of heterojunctions has been demonstrated as an effective method to improve the efficiency of photocatalytic hydrogen production. Conventional heterojunctions usually have random orientation relationships, and heterointerfaces can hinder photogenerated carrier transport due to larger lattice mismatches, thus reducing the photoelectric conversion efficiency. In this study, a novel Te/InO@MXene lattice coherency heterojunction was prepared by leveraging the identical lattice spacing of InO (222) and Te (021) crystal face.

View Article and Find Full Text PDF

In organic solar cells, the aggregation and crystallization of polymers are significant for bulk heterojunction. Blending with acceptor materials, polymer donor materials can adjust their aggregation by the movement of the chain segments. In this paper, the unfused structures based on thiophene and carbazole are respectively designed and introduced into the donor-acceptor copolymer donor materials to investigate the influence of flexible and rigid structures on polymer-aggregation leading photoelectric performance.

View Article and Find Full Text PDF

This paper addresses the author's current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very sensitive electrometers. The resulting characterization methods, thermally stimulated depolarization (TSD) and thermal-windowing deconvolution (TWD), provide a powerful way to study local and cooperative relaxations in the amorphous state of matter that are, arguably, essential to understanding the glass transition, molecular motions in the rubbery and molten states and even the processes leading to crystallization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!