Vibrational wave packet dynamics provides an opportunity to explore the energy landscape and the population transfer between nonadiabatically coupled excited electronic states. Here the coupled nonadiabatic dynamics of the CΣ and DΣ states of sodium hydride (NaH) in the gas phase in the adiabatic picture is studied, using a sequence of ultra-fast laser pulses in the femtosecond region. Emergence of different population dynamics and dissociation probabilities is shown by carefully choosing the pulse wavelength, duration and time-shift between the pulses, exciting the molecule from the ground XΣ state the immediate AΣ state. Quantum dynamics simulations were performed in the adiabatic picture, avoiding the adiabatic to diabatic transformation. Predissociation resonances, vibrational states with finite lifetimes, arise due to nonadiabatic couplings between bound and continuum states. Here accurate resonance energies and widths are computed providing further insight into the dissociation dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cp06081g | DOI Listing |
Sci Adv
January 2025
Center for Nano Science and Technology, Fondazione Istituto Italiano di Tecnologia, Milano, Italy.
Achieving highly tailored control over both the spatial and temporal evolution of light's orbital angular momentum (OAM) on ultrafast timescales remains a critical challenge in photonics. Here, we introduce a method to modulate the OAM of light on a femtosecond scale by engineering a space-time coupling in ultrashort pulses. By linking azimuthal position with time, we implement an azimuthally varying Fourier transformation to dynamically alter light's spatial distribution in a fixed transverse plane.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
In a previous publication [S. E. Schrader et al.
View Article and Find Full Text PDFSensors (Basel)
December 2024
College of Civil Engineering and Architecture, Xiamen University of Technology, Xiamen 361024, China.
Phys Rev Lett
December 2024
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
Phys Rev Lett
December 2024
MajuLab, CNRS-UCA-SU-NUS-NTU International Joint Research Laboratory.
A (target) quantum system is often measured through observations performed on a second (meter) system to which the target is coupled. In the presence of global conservation laws holding on the joint meter-target system, the Wigner-Araki-Yanase theorem and its generalizations predict a lower bound on the measurement's error (Ozawa's bound). While practically negligible for macroscopic meters, it becomes relevant for microscopic ones.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!