Cystathionine γ-lyase (CGL) is a PLP-dependent enzyme that catalyzes the last step of the reverse transsulfuration route for endogenous cysteine biosynthesis. The canonical CGL-catalyzed process consists of an α,γ-elimination reaction that breaks down cystathionine into cysteine, α-ketobutyrate, and ammonia. In some species, the enzyme can alternatively use cysteine as a substrate, resulting in the production of hydrogen sulfide (H S). Importantly, inhibition of the enzyme and consequently of its H S production activity, makes multiresistant bacteria considerably more susceptible to antibiotics. Other organisms, such as Toxoplasma gondii, the causative agent of toxoplasmosis, encode a CGL enzyme (TgCGL) that almost exclusively catalyzes the canonical process, with only minor reactivity to cysteine. Interestingly, the substitution of N360 by a serine (the equivalent amino acid residue in the human enzyme) at the active site changes the specificity of TgCGL for the catalysis of cystathionine, resulting in an enzyme that can cleave both the CγS and the CβS bond of cystathionine. Based on these findings and to deepen the molecular basis underlying the enzyme-substrate specificity, we have elucidated the crystal structures of native TgCGL and the variant TgCGL-N360S from crystals grown in the presence of cystathionine, cysteine, and the inhibitor d,l-propargylglycine (PPG). Our structures reveal the binding mode of each molecule within the catalytic cavity and help explain the inhibitory behavior of cysteine and PPG. A specific inhibitory mechanism of TgCGL by PPG is proposed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053738PMC
http://dx.doi.org/10.1002/pro.4619DOI Listing

Publication Analysis

Top Keywords

cystathionine γ-lyase
8
toxoplasma gondii
8
cystathionine cysteine
8
cysteine
7
cystathionine
6
enzyme
6
structural basis
4
basis inhibition
4
inhibition cystathionine
4
γ-lyase toxoplasma
4

Similar Publications

Ergothioneine improves healthspan of aged animals by enhancing cGPDH activity through CSE-dependent persulfidation.

Cell Metab

January 2025

Leibniz Institute for Analytical Sciences, ISAS e.V., Dortmund, Germany; School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK. Electronic address:

Ergothioneine (ET), a dietary thione/thiol, is receiving growing attention for its possible benefits in healthy aging and metabolic resilience. Our study investigates ET's effects on healthspan in aged animals, revealing lifespan extension and enhanced mobility in Caenorhabditis elegans, accompanied by improved stress resistance and reduced age-associated biomarkers. In aged rats, ET administration enhances exercise endurance, muscle mass, and vascularization, concomitant with higher NAD levels in muscle.

View Article and Find Full Text PDF

Homocystinuria due to cystathionine beta-synthase (CBS) deficiency is a rare metabolic disorder inherited as an autosomal recessive trait. Spectrum of genetic variants in gene and their correlation with the phenotypes of homocystinuria in Sri Lankan patients have not been reported to date. The objective of this study was to identify the genotypes and genotype-phenotype correlations in a cohort of Sri Lankan patients with homocystinuria due to CBS deficiency.

View Article and Find Full Text PDF

The cystathionine beta-synthase (CBS) gene plays a critical role in numerous physiological processes, including cellular proliferation, bioenergetics, and redox balance, and has been implicated in many cancers, including breast and gastric cancers. Previous studies have suggested that VNTR polymorphism in intron 13 of the CBS gene may influence enzyme activity, as an increase in the number of repeats in this VNTR leads to a reduction in the activity of the CBS enzyme. In this case-control study, for the first time, we genotyped 107 patients with gastric cancer (and 111 healthy controls) and 138 patients with breast cancer (and 124 healthy controls) for the CBS VNTR polymorphism using PCR.

View Article and Find Full Text PDF

Predicting drug-target interaction (DTI) stands as a pivotal and formidable challenge in pharmaceutical research. Many existing deep learning methods only learn the high-dimensional representation of ligands and targets on a small scale. However, it is difficult for the model to obtain the potential law of combining pockets or multiple binding sites on a large scale.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!