Enhancing NMR signals of biomacromolecules by hyperpolarization offers exciting opportunities for diagnostic applications. However, their hyperpolarization via parahydrogen remains challenging as specific catalytic interactions are required, which are difficult to tune due to the large size of the biomolecule and its insolubility in organic solvents. Herein, we show the unprecedented hyperpolarization of the cancer-targeting DNA aptamer AS1411. By screening different molecular motifs for an unsaturated label in nucleosides and in DNA oligomers, we were able to identify structural prerequisites for the hyperpolarization of AS1411. Finally, adjusting the polarity of AS1411 by complexing the DNA backbone with amino polyethylene glycol chains allowed the hydrogenation of the label with parahydrogen while the DNA structure remains stable to maintain its biological function. Our results are expected to advance hyperpolarized molecular imaging technology for disease detection in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202300531DOI Listing

Publication Analysis

Top Keywords

cancer-targeting dna
8
dna aptamer
8
dna
5
parahydrogen-induced polarization
4
polarization labeled
4
labeled cancer-targeting
4
aptamer enhancing
4
enhancing nmr
4
nmr signals
4
signals biomacromolecules
4

Similar Publications

The early symptoms of hepatocellular carcinoma patients are often subtle and easily overlooked. By the time patients exhibit noticeable symptoms, the disease has typically progressed to middle or late stages, missing optimal treatment opportunities. Therefore, discovering biomarkers is essential for elucidating their functions for the early diagnosis and prevention.

View Article and Find Full Text PDF

Interest in biological therapy for cancer has surged due to its precise targeting of cancer cells and minimized impact on surrounding healthy tissues. This review discusses various biological cancer therapies, highlighting advanced alternatives over conventional chemotherapy alone. It explores DNA and RNA-based vaccines, T-cell modifications, adoptive cell transfer, CAR T cell therapy, angiogenesis inhibitors, and the combination of immunotherapy with chemotherapy, offering a holistic view of the potential in cancer treatment.

View Article and Find Full Text PDF

Intelligent DNA Nanosystem for Broad-Spectrum Oncological Typing and Therapy.

ACS Sens

December 2024

Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.

The occurrence of multiple primary cancers in individual patients underscores the need for diagnostic and therapeutic techniques with augmented cancer-targeting selectivity and broad-spectrum antitumor effects. To address this, we develop a quadruple-input-triggered R-ND-ND logic gated oncological nanosystem (OAA). This system employs four cancer-related markers (EpCAM, MUC1, APE1, and miR-21) to generate three distinct fluorescence signals, enabling precise differentiation of various cancer cell lines (MCF-7, HepG2, and HeLa) from normal cells (MCF-10A).

View Article and Find Full Text PDF

A novel mouse model recapitulating the MMR-defective SCLC subtype uncovers an actionable sensitivity to immune checkpoint blockade.

J Cancer Res Clin Oncol

November 2024

Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany.

Purpose: Small cell lung cancer (SCLC) has an extremely poor prognosis. Despite high initial response rates to chemotherapy and modest survival improvements with the addition of immune checkpoint inhibitors (ICI), almost all patients experience relapse and fatal outcomes. Recent genomic insights uncovered extensive molecular heterogeneity in addition to the almost uniform loss of RB1 and TRP53.

View Article and Find Full Text PDF

Breast cancer, characterized by genetic diversity and molecular subtypes, presents significant treatment challenges, especially in human epidermal growth factor receptor type 2 (HER2)-positive cases, which are associated with poor prognosis. Metformin, widely known for its antidiabetic effects, has emerged as a promising candidate for cancer therapy. This study investigates the effect of metformin on miR-125a promoter methylation and its subsequent impact on the HER2 signaling pathway in HER2-positive breast cancer cells (SK-BR3).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!