Identification of structurally novel inhibitors of lysine methyltransferase G9a has been a subject of intense research in cancer epigenetics. Starting with the high-throughput screening (HTS) hit - obtained from the chemical library of the University of Tokyo Drug Discovery Initiative, the structure-activity relationship of the unique substrate-competitive inhibitors was established with the help of X-ray crystallography and fragment molecular orbital (FMO) calculations for the ligand-protein interaction. Further optimization of the characteristics and drug metabolism and pharmacokinetics (DMPK) properties led to the identification of (RK-701), which is a structurally distinct potent inhibitor of G9a/GLP (IC = 27/53 nM). Compound exhibited remarkable selectivity against other related methyltransferases, dose-dependent attenuation of cellular H3K9me2 levels, and tumor growth inhibition in MOLT-4 cells . Moreover, compound showed inhibition of tumor initiation and growth in a carcinogen-induced hepatocellular carcinoma (HCC) mouse model without overt acute toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.2c02059 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.
View Article and Find Full Text PDFJ Gene Med
January 2025
Department of Joint Surgery and Orthopedic Medicine, Shanghai Changzheng Hospital (The Second Affiliated Hospital of Naval Medical University), Shanghai, China.
Background And Objective: Osteoarthritis (OA) is characterized by progressive cartilage degeneration mediated by various molecular pathways, including inflammatory and autophagic processes. SET domain-containing lysine methyltransferase 7 (SETD7), a methyltransferase, has been implicated in OA pathology. This study investigates the expression pattern of SETD7 in OA and its role in promoting interleukin-1 beta (IL-1β)-induced chondrocyte injury through modulation of autophagy and inflammation.
View Article and Find Full Text PDFSci Rep
January 2025
National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
Acute Myeloid Leukemia (AML) with KMT2A rearrangements (KMT2Ar), found on chromosome 11q23, is often called KMT2A-rearranged AML (KMT2Ar-AML). This variant is highly aggressive, characterized by rapid disease progression and poor outcomes. Growing knowledge of epigenetic changes, especially lactylation, has opened new avenues for investigation and management of this subtype.
View Article and Find Full Text PDFJ Cardiothorac Surg
January 2025
Department of Respiratory and Critical Care Medicine, Datian County General Hospital, 180 Xueshan North Road, Datian County, 366100, China.
Background: Lung adenocarcinoma is the most common form of lung cancer and one of the most life-threatening malignant tumors. Ferroptosis is an iron-dependent regulatory cell death pathway that is crucial for tumor growth. SNX30 is a key regulatory factor in cardiac development; however, its regulatory mechanism and role in inducing ferroptosis in lung adenocarcinoma remain unclear.
View Article and Find Full Text PDFTher Adv Med Oncol
January 2025
Department of Molecular Biology of Cancer, Medical University of Lodz, Mazowiecka 6/8, Lodz 92-215, Poland.
The enhancer of zeste homolog 2 (EZH2) is a catalytic component of Polycomb repressive complex 2 (PRC2) mediating the methylation of histone 3 lysine 27 (H3K27me3) and hence the epigenetic repression of target genes, known as canonical function. Growing evidence indicates that EZH2 has non-canonical roles that are exerted as PRC2-dependent and PRC2-independent methylation of non-histone proteins, and methyltransferase-independent interactions of EZH2 with various proteins contributing to gene expression regulation and alterations in the protein stability. is frequently mutated and/or its expression is deregulated in various cancer types.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!