Predators and prey engage in games where each player must counter the moves of the other, and these games include multiple phases operating at different spatiotemporal scales. Recent work has highlighted potential issues related to scale-sensitive inferences in predator-prey interactions, and there is growing appreciation that these may exhibit pronounced but predictable dynamics. Motivated by previous assertions about effects arising from foraging games between white-tailed deer and canid predators (coyotes and wolves), we used a large and year-round network of trail cameras to characterize deer and predator foraging games, with a particular focus on clarifying its temporal scale and seasonal variation. Linear features were strongly associated with predator detection rates, suggesting these play a central role in canid foraging tactics by expediting movement. Consistent with expectations for prey contending with highly mobile predators, deer responses were more sensitive to proximal risk metrics at finer spatiotemporal scales, suggesting that coarser but more commonly used scales of analysis may miss useful insights into prey risk-response. Time allocation appears to be a key tactic for deer risk management and was more strongly moderated by factors associated with forage or evasion heterogeneity (forest cover, snow and plant phenology) than factors associated with the likelihood of predator encounter (linear features). Trade-offs between food and safety appeared to vary as much seasonally as spatially, with snow and vegetation phenology giving rise to a "phenology of fear." Deer appear free to counter predators during milder times of year, but a combination of poor foraging state, reduced forage availability, greater movements costs, and reproductive state dampen responsiveness during winter. Pronounced intra-annual variation in predator-prey interactions may be common in seasonal environments.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ecy.4019DOI Listing

Publication Analysis

Top Keywords

white-tailed deer
8
spatiotemporal scales
8
predator-prey interactions
8
foraging games
8
linear features
8
factors associated
8
deer
6
games
5
phenology fear
4
fear investigating
4

Similar Publications

SARS-CoV-2 surveillance and detection in wild, captive, and domesticated animals in Nebraska: 2021-2023.

Front Vet Sci

January 2025

School of Veterinary Medicine and Biomedical Sciences, Nebraska Veterinary Diagnostic Center, University of Nebraska-Lincoln, Lincoln, NE, United States.

Widespread surveillance for SARS-CoV-2 was conducted across wildlife, captive animals in zoological collections, and domestic cats in Nebraska from 2021 to 2023. The goal of this effort was to determine the prevalence, phylogenetic and spatial distribution characteristics of circulating SARS-CoV-2 variants using various diagnostic methodologies that can utilize both antemortem and postmortem samples, which may be required for wildlife such as white-tailed deer. Statewide surveillance testing revealed high variation in SARS-CoV-2 prevalence among species, with white-tailed deer identified as the primary reservoir.

View Article and Find Full Text PDF

SARS-CoV-2 has been found in multiple species, including cervids such as wild white-tailed deer (WTD), in multiple regions in the United States, including Illinois. The virus has been shown to transmit among WTD, and across species in both directions (deer-to-humans and humans-to-deer). Cross-species transmission requires infectious contact between WTD and humans, the form and frequency of which is poorly understood.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected in multiple animal species, including white-tailed deer (WTD), raising concerns about zoonotic transmission, particularly in environments with frequent human interactions. To understand how human exposure influences SARS-CoV-2 infection in WTD, we compared infection and exposure prevalence between farmed and free-ranging deer populations in Florida. We also examined the timing and viral variants in WTD relative to those in Florida's human population.

View Article and Find Full Text PDF

Evaluating the Diagnostic Efficacy of Using Pooled Samples for Chronic Wasting Disease Testing and Surveillance.

Pathogens

December 2024

Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.

Disease monitoring informs the opportunities for intervention by natural resource agencies tasked with managing chronic wasting disease (CWD) in wild cervids. However, allocating funds toward testing can reduce those available for education, outreach, and disease reduction. Implementation of more efficient testing strategies can help meet both an expanding need by resource managers and a burgeoning demand from the hunting public in North America.

View Article and Find Full Text PDF

White-tailed deer limit their spatio-temporal overlap with hikers in a protected area.

Sci Rep

December 2024

Centre for Forest Research & Centre for Northern Studies, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC, Canada.

The pressure on ecosystems resulting from outdoor recreational activities is increasing globally. Protected areas offer to large mammals refugia free of hunting with greater access to food resources, but the presence of humans for recreation in these areas may induce changes in behaviour, activity pattern, and habitat use. We used camera traps to model the spatial distribution and temporal activity of the white-tailed deer (Odocoileus virginianus) in a nature reserve located close to Montreal, the second largest metropole in Canada.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!